Calculations for 3D~boundary layer by high accuracy finite-difference method
Matematičeskoe modelirovanie, Tome 10 (1998) no. 10, pp. 79-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the new high accuracy numerical method application to solving 3D laminar boundary layer equations over blunt smooth bodies with permeable surface are presented. For the wide range of the problem parameters the influence of the grid spacing and the mesh type (uniform and nonuniform) on the solution accuracy is investigated. The mesh convergence on the embedded grids sequence is demonstrated. The comparison with results obtained on the basis of Keller and Petukhov methods, having second and forth approximation orders, is presented.
@article{MM_1998_10_10_a6,
     author = {A. I. Borodin and S. V. Peigin and S. V. Timchenko},
     title = {Calculations for {3D~boundary} layer by high accuracy finite-difference method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1998_10_10_a6/}
}
TY  - JOUR
AU  - A. I. Borodin
AU  - S. V. Peigin
AU  - S. V. Timchenko
TI  - Calculations for 3D~boundary layer by high accuracy finite-difference method
JO  - Matematičeskoe modelirovanie
PY  - 1998
SP  - 79
EP  - 86
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1998_10_10_a6/
LA  - ru
ID  - MM_1998_10_10_a6
ER  - 
%0 Journal Article
%A A. I. Borodin
%A S. V. Peigin
%A S. V. Timchenko
%T Calculations for 3D~boundary layer by high accuracy finite-difference method
%J Matematičeskoe modelirovanie
%D 1998
%P 79-86
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1998_10_10_a6/
%G ru
%F MM_1998_10_10_a6
A. I. Borodin; S. V. Peigin; S. V. Timchenko. Calculations for 3D~boundary layer by high accuracy finite-difference method. Matematičeskoe modelirovanie, Tome 10 (1998) no. 10, pp. 79-86. http://geodesic.mathdoc.fr/item/MM_1998_10_10_a6/