The analytical solution to linear nonautonomous systems of ordinary differential equations
Matematičeskoe modelirovanie, Tome 9 (1997) no. 8, pp. 105-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is presented for calculating the analytical solution to linear systems of ordinary differential equations with time-dependent coefficients on the basis of diagonalization of the system matrix. The diagonalization problem is a generalization of the eigenvalue problem considered in case of the autonomous ODE system, thus the analytical solution is obtained as a sum of linearly independent particular solutions forming the fundamental system of solutions. A system of the point reactor kinetics equations with the reactivity being a linear function of time is considered.
@article{MM_1997_9_8_a9,
     author = {D. M. Babanakov and I. R. Suslov},
     title = {The analytical solution to linear nonautonomous systems of ordinary differential equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--109},
     publisher = {mathdoc},
     volume = {9},
     number = {8},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1997_9_8_a9/}
}
TY  - JOUR
AU  - D. M. Babanakov
AU  - I. R. Suslov
TI  - The analytical solution to linear nonautonomous systems of ordinary differential equations
JO  - Matematičeskoe modelirovanie
PY  - 1997
SP  - 105
EP  - 109
VL  - 9
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1997_9_8_a9/
LA  - ru
ID  - MM_1997_9_8_a9
ER  - 
%0 Journal Article
%A D. M. Babanakov
%A I. R. Suslov
%T The analytical solution to linear nonautonomous systems of ordinary differential equations
%J Matematičeskoe modelirovanie
%D 1997
%P 105-109
%V 9
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1997_9_8_a9/
%G ru
%F MM_1997_9_8_a9
D. M. Babanakov; I. R. Suslov. The analytical solution to linear nonautonomous systems of ordinary differential equations. Matematičeskoe modelirovanie, Tome 9 (1997) no. 8, pp. 105-109. http://geodesic.mathdoc.fr/item/MM_1997_9_8_a9/