The analytical solution to linear nonautonomous systems of ordinary differential equations
Matematičeskoe modelirovanie, Tome 9 (1997) no. 8, pp. 105-109
Cet article a éte moissonné depuis la source Math-Net.Ru
A method is presented for calculating the analytical solution to linear systems of ordinary differential equations with time-dependent coefficients on the basis of diagonalization of the system matrix. The diagonalization problem is a generalization of the eigenvalue problem considered in case of the autonomous ODE system, thus the analytical solution is obtained as a sum of linearly independent particular solutions forming the fundamental system of solutions. A system of the point reactor kinetics equations with the reactivity being a linear function of time is considered.
@article{MM_1997_9_8_a9,
author = {D. M. Babanakov and I. R. Suslov},
title = {The analytical solution to linear nonautonomous systems of ordinary differential equations},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {105--109},
year = {1997},
volume = {9},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1997_9_8_a9/}
}
TY - JOUR AU - D. M. Babanakov AU - I. R. Suslov TI - The analytical solution to linear nonautonomous systems of ordinary differential equations JO - Matematičeskoe modelirovanie PY - 1997 SP - 105 EP - 109 VL - 9 IS - 8 UR - http://geodesic.mathdoc.fr/item/MM_1997_9_8_a9/ LA - ru ID - MM_1997_9_8_a9 ER -
D. M. Babanakov; I. R. Suslov. The analytical solution to linear nonautonomous systems of ordinary differential equations. Matematičeskoe modelirovanie, Tome 9 (1997) no. 8, pp. 105-109. http://geodesic.mathdoc.fr/item/MM_1997_9_8_a9/