Emission tomography problem at the disk
Matematičeskoe modelirovanie, Tome 9 (1997) no. 7, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of emission tomography problem at the disk is discussed. Uniqueness theorem and stability theorems for discrete data are proved. These results can be used for justification of different algorithms. Detailed and tested algorithm can be used for decision a problem when absorption coefficient depends only on radius of the disk.
@article{MM_1997_9_7_a6,
     author = {O. A. Klimenko},
     title = {Emission tomography problem at the disk},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {9},
     number = {7},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1997_9_7_a6/}
}
TY  - JOUR
AU  - O. A. Klimenko
TI  - Emission tomography problem at the disk
JO  - Matematičeskoe modelirovanie
PY  - 1997
SP  - 71
EP  - 80
VL  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1997_9_7_a6/
LA  - ru
ID  - MM_1997_9_7_a6
ER  - 
%0 Journal Article
%A O. A. Klimenko
%T Emission tomography problem at the disk
%J Matematičeskoe modelirovanie
%D 1997
%P 71-80
%V 9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1997_9_7_a6/
%G ru
%F MM_1997_9_7_a6
O. A. Klimenko. Emission tomography problem at the disk. Matematičeskoe modelirovanie, Tome 9 (1997) no. 7, pp. 71-80. http://geodesic.mathdoc.fr/item/MM_1997_9_7_a6/