Computation of periodic oscillations of a~satellite
Matematičeskoe modelirovanie, Tome 9 (1997) no. 6, pp. 82-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the ordinary differential equation of the second order describing oscillations of a satellite in a plane of its elliptical orbit. The equation contains two parameters: $e$ and $\mu$. It is regular for $0\leq e1$ and singular for $e=1$. We have computed five families of symmetric (odd) periodic solutions for $|\mu|\leq20$ and for $e=0,0.1,0.5,0.9,0.99,0.999$. We have also computed the corresponding values of the trace characterising their stability. For $e>0.9$ we use the regularization by means of the eccentric anomaly. Results are given in figures. They show that for $e\to1$ these families tend to some limiting positions.
@article{MM_1997_9_6_a6,
     author = {A. D. Bruno and V. J. Petrovich},
     title = {Computation of periodic oscillations of a~satellite},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {82--94},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1997_9_6_a6/}
}
TY  - JOUR
AU  - A. D. Bruno
AU  - V. J. Petrovich
TI  - Computation of periodic oscillations of a~satellite
JO  - Matematičeskoe modelirovanie
PY  - 1997
SP  - 82
EP  - 94
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1997_9_6_a6/
LA  - ru
ID  - MM_1997_9_6_a6
ER  - 
%0 Journal Article
%A A. D. Bruno
%A V. J. Petrovich
%T Computation of periodic oscillations of a~satellite
%J Matematičeskoe modelirovanie
%D 1997
%P 82-94
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1997_9_6_a6/
%G ru
%F MM_1997_9_6_a6
A. D. Bruno; V. J. Petrovich. Computation of periodic oscillations of a~satellite. Matematičeskoe modelirovanie, Tome 9 (1997) no. 6, pp. 82-94. http://geodesic.mathdoc.fr/item/MM_1997_9_6_a6/