Preconditioning in the domain decomposition methods for the $p$-version with the hierarchical bases
Matematičeskoe modelirovanie, Tome 8 (1996) no. 9, pp. 63-73
Cet article a éte moissonné depuis la source Math-Net.Ru
A DD (domain decomposition) method is considered for the $p$- and $h$-$p$-versions with the curvilinear elements for the elliptic second order partial differential equation. Coordinate functions of the reference element are defined by the products of the Legendre's polynomials. Efficient DD preconditioner is suggested on the basis of preconditioners for the problems on subdomains and for the Shur complement.
@article{MM_1996_8_9_a6,
author = {V. G. Korneev and S. A. Ivanov},
title = {Preconditioning in the domain decomposition methods for the $p$-version with the hierarchical bases},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {63--73},
year = {1996},
volume = {8},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MM_1996_8_9_a6/}
}
TY - JOUR AU - V. G. Korneev AU - S. A. Ivanov TI - Preconditioning in the domain decomposition methods for the $p$-version with the hierarchical bases JO - Matematičeskoe modelirovanie PY - 1996 SP - 63 EP - 73 VL - 8 IS - 9 UR - http://geodesic.mathdoc.fr/item/MM_1996_8_9_a6/ LA - en ID - MM_1996_8_9_a6 ER -
V. G. Korneev; S. A. Ivanov. Preconditioning in the domain decomposition methods for the $p$-version with the hierarchical bases. Matematičeskoe modelirovanie, Tome 8 (1996) no. 9, pp. 63-73. http://geodesic.mathdoc.fr/item/MM_1996_8_9_a6/