Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales
Matematičeskoe modelirovanie, Tome 8 (1996) no. 9, pp. 31-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we will introduce Adaptive Composite Finite Elements as a discrete homogenization technique for partial differential equations having small micro-structures as, e.g., rough boundaries or jumping coefficients. These Finite Elements allow to discretize such problems only with a few degrees of freedom and still getting the required asymptotic approximation property. This method can be applied for both, a relatively crude approximation of the PDE and the application of multi-grid methods to problems where standard finite elements would always result in systems of equations having a huge number of unknowns.
@article{MM_1996_8_9_a3,
     author = {W. Hackbusch and S. A. Sauter},
     title = {Adaptive composite finite elements for the solution of {PDEs} containing nonuniformely distributed micro-scales},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {8},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_1996_8_9_a3/}
}
TY  - JOUR
AU  - W. Hackbusch
AU  - S. A. Sauter
TI  - Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales
JO  - Matematičeskoe modelirovanie
PY  - 1996
SP  - 31
EP  - 43
VL  - 8
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1996_8_9_a3/
LA  - en
ID  - MM_1996_8_9_a3
ER  - 
%0 Journal Article
%A W. Hackbusch
%A S. A. Sauter
%T Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales
%J Matematičeskoe modelirovanie
%D 1996
%P 31-43
%V 8
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1996_8_9_a3/
%G en
%F MM_1996_8_9_a3
W. Hackbusch; S. A. Sauter. Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales. Matematičeskoe modelirovanie, Tome 8 (1996) no. 9, pp. 31-43. http://geodesic.mathdoc.fr/item/MM_1996_8_9_a3/