Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales
Matematičeskoe modelirovanie, Tome 8 (1996) no. 9, pp. 31-43
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we will introduce Adaptive Composite Finite Elements as a discrete homogenization technique for partial differential equations having small micro-structures as, e.g., rough boundaries or jumping coefficients. These Finite Elements allow to discretize such problems only with a few degrees of freedom and still getting the required asymptotic approximation property. This method can be applied for both, a relatively crude approximation of the PDE and the application of multi-grid methods to problems where standard finite elements would always result in systems of equations having a huge number of unknowns.
@article{MM_1996_8_9_a3,
author = {W. Hackbusch and S. A. Sauter},
title = {Adaptive composite finite elements for the solution of {PDEs} containing nonuniformely distributed micro-scales},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {31--43},
year = {1996},
volume = {8},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MM_1996_8_9_a3/}
}
TY - JOUR AU - W. Hackbusch AU - S. A. Sauter TI - Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales JO - Matematičeskoe modelirovanie PY - 1996 SP - 31 EP - 43 VL - 8 IS - 9 UR - http://geodesic.mathdoc.fr/item/MM_1996_8_9_a3/ LA - en ID - MM_1996_8_9_a3 ER -
W. Hackbusch; S. A. Sauter. Adaptive composite finite elements for the solution of PDEs containing nonuniformely distributed micro-scales. Matematičeskoe modelirovanie, Tome 8 (1996) no. 9, pp. 31-43. http://geodesic.mathdoc.fr/item/MM_1996_8_9_a3/