Finite-element approximation on manifolds
Matematičeskoe modelirovanie, Tome 8 (1996) no. 9, pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of construction of the local approximations (in particurlar – generalization of finite-element ones, for example, plane finite-elements of Courant, Zlamal, Argyris etc.) in the case of functions defined on $n$-dimensional ($n\geq1$) smooth manifold with boundary is proposed. A notion of nondegenerate simplicial subdivision of mentioned manifold is introduced, evaluations of approach and stability in Sobolev's spaces are discussed (last ones are optimal as to $N$-width of corresponding compact).
@article{MM_1996_8_9_a2,
     author = {Yu. K. Demjanovich},
     title = {Finite-element approximation on manifolds},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {8},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_1996_8_9_a2/}
}
TY  - JOUR
AU  - Yu. K. Demjanovich
TI  - Finite-element approximation on manifolds
JO  - Matematičeskoe modelirovanie
PY  - 1996
SP  - 25
EP  - 30
VL  - 8
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1996_8_9_a2/
LA  - en
ID  - MM_1996_8_9_a2
ER  - 
%0 Journal Article
%A Yu. K. Demjanovich
%T Finite-element approximation on manifolds
%J Matematičeskoe modelirovanie
%D 1996
%P 25-30
%V 8
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1996_8_9_a2/
%G en
%F MM_1996_8_9_a2
Yu. K. Demjanovich. Finite-element approximation on manifolds. Matematičeskoe modelirovanie, Tome 8 (1996) no. 9, pp. 25-30. http://geodesic.mathdoc.fr/item/MM_1996_8_9_a2/