Global solvability of the Cauchy problem for system describing one- dimensional flow of general gas without viscosity and heat conductivity
Matematičeskoe modelirovanie, Tome 8 (1996) no. 8, pp. 51-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one dimentional gas dynamics system for normal gas without condition convexity of state equation (consisting of mass, impuls and energy conservation laws) is considered. The global existence theorem of functional solution is proved for Cauchy problem in this case. The initial date are functions wich arbitrary amplitude.
@article{MM_1996_8_8_a4,
     author = {V. A. Tupchiev},
     title = {Global solvability of the {Cauchy} problem for system describing one- dimensional flow of general gas without viscosity and heat conductivity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--68},
     publisher = {mathdoc},
     volume = {8},
     number = {8},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1996_8_8_a4/}
}
TY  - JOUR
AU  - V. A. Tupchiev
TI  - Global solvability of the Cauchy problem for system describing one- dimensional flow of general gas without viscosity and heat conductivity
JO  - Matematičeskoe modelirovanie
PY  - 1996
SP  - 51
EP  - 68
VL  - 8
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1996_8_8_a4/
LA  - ru
ID  - MM_1996_8_8_a4
ER  - 
%0 Journal Article
%A V. A. Tupchiev
%T Global solvability of the Cauchy problem for system describing one- dimensional flow of general gas without viscosity and heat conductivity
%J Matematičeskoe modelirovanie
%D 1996
%P 51-68
%V 8
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1996_8_8_a4/
%G ru
%F MM_1996_8_8_a4
V. A. Tupchiev. Global solvability of the Cauchy problem for system describing one- dimensional flow of general gas without viscosity and heat conductivity. Matematičeskoe modelirovanie, Tome 8 (1996) no. 8, pp. 51-68. http://geodesic.mathdoc.fr/item/MM_1996_8_8_a4/