How many optimal variants can exist?
Matematičeskoe modelirovanie, Tome 8 (1996) no. 4, pp. 79-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MM_1996_8_4_a5,
     author = {Yu. M. Baryshnikov},
     title = {How many optimal variants can exist?},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1996_8_4_a5/}
}
TY  - JOUR
AU  - Yu. M. Baryshnikov
TI  - How many optimal variants can exist?
JO  - Matematičeskoe modelirovanie
PY  - 1996
SP  - 79
EP  - 88
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1996_8_4_a5/
LA  - ru
ID  - MM_1996_8_4_a5
ER  - 
%0 Journal Article
%A Yu. M. Baryshnikov
%T How many optimal variants can exist?
%J Matematičeskoe modelirovanie
%D 1996
%P 79-88
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1996_8_4_a5/
%G ru
%F MM_1996_8_4_a5
Yu. M. Baryshnikov. How many optimal variants can exist?. Matematičeskoe modelirovanie, Tome 8 (1996) no. 4, pp. 79-88. http://geodesic.mathdoc.fr/item/MM_1996_8_4_a5/