Parallel methods of solving singularly perturbed boundary value problems for elliptic equations
Matematičeskoe modelirovanie, Tome 8 (1996) no. 3, pp. 111-127
Cet article a éte moissonné depuis la source Math-Net.Ru
A Dirichlet problem is considered on a rectangle for singularly perturbed linear and quasilinear elliptic equations. When the perturbation parameter equals zero, elliptic equations degenerate into zero-order ones. Special iterative and iteration-free finite difference schemes (in particularly, the schemes using parallel computations) are constructed which converge uniformly with respect to the parameter. Schwarz' method is used to construct the schemes. Necessary and sufficient conditions are given for the solutions of the iterative difference schemes to converge uniformly with respect to the perturbing parameter as the number of iterations increases. It is shown that the use of schemes with parallel computations on multiprocessor computers provides the acceleration of computations.
@article{MM_1996_8_3_a7,
author = {G. I. Shishkin and I. V. Tselischeva},
title = {Parallel methods of solving singularly perturbed boundary value problems for elliptic equations},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {111--127},
year = {1996},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1996_8_3_a7/}
}
TY - JOUR AU - G. I. Shishkin AU - I. V. Tselischeva TI - Parallel methods of solving singularly perturbed boundary value problems for elliptic equations JO - Matematičeskoe modelirovanie PY - 1996 SP - 111 EP - 127 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/MM_1996_8_3_a7/ LA - ru ID - MM_1996_8_3_a7 ER -
G. I. Shishkin; I. V. Tselischeva. Parallel methods of solving singularly perturbed boundary value problems for elliptic equations. Matematičeskoe modelirovanie, Tome 8 (1996) no. 3, pp. 111-127. http://geodesic.mathdoc.fr/item/MM_1996_8_3_a7/