Numerical method for solving the inverse scattering problem, based on the asymptotic regularization
Matematičeskoe modelirovanie, Tome 8 (1996) no. 3, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical method for the inverse problem of quantum scattering theory is suggested. It is based on the two asymptotic regularizations: the first one uses the asymptotic behaviours of the phase shift and of the module of the Jost function for high energies, and the second one – the asymptotics by step of the reciprocals to “almost” Toeplitz and Hankel matrices. The last one permits to avoid the unstable procedure of the numerical differentiation.
@article{MM_1996_8_3_a2,
     author = {R. G. Airapetyan and E. P. Zhidkov and R. L. Shakhbagyan},
     title = {Numerical method for solving the inverse scattering problem, based on the asymptotic regularization},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1996_8_3_a2/}
}
TY  - JOUR
AU  - R. G. Airapetyan
AU  - E. P. Zhidkov
AU  - R. L. Shakhbagyan
TI  - Numerical method for solving the inverse scattering problem, based on the asymptotic regularization
JO  - Matematičeskoe modelirovanie
PY  - 1996
SP  - 33
EP  - 48
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1996_8_3_a2/
LA  - ru
ID  - MM_1996_8_3_a2
ER  - 
%0 Journal Article
%A R. G. Airapetyan
%A E. P. Zhidkov
%A R. L. Shakhbagyan
%T Numerical method for solving the inverse scattering problem, based on the asymptotic regularization
%J Matematičeskoe modelirovanie
%D 1996
%P 33-48
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1996_8_3_a2/
%G ru
%F MM_1996_8_3_a2
R. G. Airapetyan; E. P. Zhidkov; R. L. Shakhbagyan. Numerical method for solving the inverse scattering problem, based on the asymptotic regularization. Matematičeskoe modelirovanie, Tome 8 (1996) no. 3, pp. 33-48. http://geodesic.mathdoc.fr/item/MM_1996_8_3_a2/