Numerical method for solving the inverse scattering problem, based on the asymptotic regularization
Matematičeskoe modelirovanie, Tome 8 (1996) no. 3, pp. 33-48
Cet article a éte moissonné depuis la source Math-Net.Ru
The numerical method for the inverse problem of quantum scattering theory is suggested. It is based on the two asymptotic regularizations: the first one uses the asymptotic behaviours of the phase shift and of the module of the Jost function for high energies, and the second one – the asymptotics by step of the reciprocals to “almost” Toeplitz and Hankel matrices. The last one permits to avoid the unstable procedure of the numerical differentiation.
@article{MM_1996_8_3_a2,
author = {R. G. Airapetyan and E. P. Zhidkov and R. L. Shakhbagyan},
title = {Numerical method for solving the inverse scattering problem, based on the asymptotic regularization},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {33--48},
year = {1996},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1996_8_3_a2/}
}
TY - JOUR AU - R. G. Airapetyan AU - E. P. Zhidkov AU - R. L. Shakhbagyan TI - Numerical method for solving the inverse scattering problem, based on the asymptotic regularization JO - Matematičeskoe modelirovanie PY - 1996 SP - 33 EP - 48 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/MM_1996_8_3_a2/ LA - ru ID - MM_1996_8_3_a2 ER -
%0 Journal Article %A R. G. Airapetyan %A E. P. Zhidkov %A R. L. Shakhbagyan %T Numerical method for solving the inverse scattering problem, based on the asymptotic regularization %J Matematičeskoe modelirovanie %D 1996 %P 33-48 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/MM_1996_8_3_a2/ %G ru %F MM_1996_8_3_a2
R. G. Airapetyan; E. P. Zhidkov; R. L. Shakhbagyan. Numerical method for solving the inverse scattering problem, based on the asymptotic regularization. Matematičeskoe modelirovanie, Tome 8 (1996) no. 3, pp. 33-48. http://geodesic.mathdoc.fr/item/MM_1996_8_3_a2/