Optimal smoothig of experimental data including derivatives
Matematičeskoe modelirovanie, Tome 8 (1996) no. 2, pp. 66-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a base of the classic theory of average estimation the problem of optimal processing experimental data was solved for case when the observation vector included both the selection values of measurable process and values of process derivatives. On a base of the degree polynoms and Chebyshev polynoms the analytical formulae were obtained for optimal estimation parametres of smoothing functions permitting the easy realisation on computers.
@article{MM_1996_8_2_a6,
     author = {Yu. G. Bulychev and I. V. Burlai},
     title = {Optimal smoothig of experimental data including derivatives},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {66--74},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1996_8_2_a6/}
}
TY  - JOUR
AU  - Yu. G. Bulychev
AU  - I. V. Burlai
TI  - Optimal smoothig of experimental data including derivatives
JO  - Matematičeskoe modelirovanie
PY  - 1996
SP  - 66
EP  - 74
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1996_8_2_a6/
LA  - ru
ID  - MM_1996_8_2_a6
ER  - 
%0 Journal Article
%A Yu. G. Bulychev
%A I. V. Burlai
%T Optimal smoothig of experimental data including derivatives
%J Matematičeskoe modelirovanie
%D 1996
%P 66-74
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1996_8_2_a6/
%G ru
%F MM_1996_8_2_a6
Yu. G. Bulychev; I. V. Burlai. Optimal smoothig of experimental data including derivatives. Matematičeskoe modelirovanie, Tome 8 (1996) no. 2, pp. 66-74. http://geodesic.mathdoc.fr/item/MM_1996_8_2_a6/