Optimal smoothig of experimental data including derivatives
Matematičeskoe modelirovanie, Tome 8 (1996) no. 2, pp. 66-74
Cet article a éte moissonné depuis la source Math-Net.Ru
On a base of the classic theory of average estimation the problem of optimal processing experimental data was solved for case when the observation vector included both the selection values of measurable process and values of process derivatives. On a base of the degree polynoms and Chebyshev polynoms the analytical formulae were obtained for optimal estimation parametres of smoothing functions permitting the easy realisation on computers.
@article{MM_1996_8_2_a6,
author = {Yu. G. Bulychev and I. V. Burlai},
title = {Optimal smoothig of experimental data including derivatives},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {66--74},
year = {1996},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1996_8_2_a6/}
}
Yu. G. Bulychev; I. V. Burlai. Optimal smoothig of experimental data including derivatives. Matematičeskoe modelirovanie, Tome 8 (1996) no. 2, pp. 66-74. http://geodesic.mathdoc.fr/item/MM_1996_8_2_a6/