The efficient numerical methods for integration the one-dimensional problems in gas dynamics
Matematičeskoe modelirovanie, Tome 8 (1996) no. 1, pp. 77-92
The problem of construction of the fast-acting algorithms in order to calculate numerical fluxes in conservative finite difference schemes by solution of the Riemann problem is considered. The new monotone scheme of second-order consistency is received.
@article{MM_1996_8_1_a7,
author = {O. V. Vorob'ev and Ya. A. Holodov},
title = {The efficient numerical methods for integration the one-dimensional problems in gas dynamics},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {77--92},
year = {1996},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1996_8_1_a7/}
}
TY - JOUR AU - O. V. Vorob'ev AU - Ya. A. Holodov TI - The efficient numerical methods for integration the one-dimensional problems in gas dynamics JO - Matematičeskoe modelirovanie PY - 1996 SP - 77 EP - 92 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/MM_1996_8_1_a7/ LA - ru ID - MM_1996_8_1_a7 ER -
O. V. Vorob'ev; Ya. A. Holodov. The efficient numerical methods for integration the one-dimensional problems in gas dynamics. Matematičeskoe modelirovanie, Tome 8 (1996) no. 1, pp. 77-92. http://geodesic.mathdoc.fr/item/MM_1996_8_1_a7/