Regularized Greville method and it's applications in transmission tomography
Matematičeskoe modelirovanie, Tome 8 (1996) no. 11, pp. 109-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new stable direct algebraical method (regularized Greville algorithm) is proposed which allows to solve 2-dimensional inverse Radon problem with the resolution less than $51\times51$. The method was checked up at two schemes: parallel and fan (one direction) and different variants of a model (up to 12 gaussians). Algorithm is suited for parallel architecture of $n$-hypereubc because the solution is given in the explicit form.
@article{MM_1996_8_11_a6,
     author = {A. V. Khovanskii},
     title = {Regularized {Greville} method and it's applications in transmission tomography},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {8},
     number = {11},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1996_8_11_a6/}
}
TY  - JOUR
AU  - A. V. Khovanskii
TI  - Regularized Greville method and it's applications in transmission tomography
JO  - Matematičeskoe modelirovanie
PY  - 1996
SP  - 109
EP  - 118
VL  - 8
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1996_8_11_a6/
LA  - ru
ID  - MM_1996_8_11_a6
ER  - 
%0 Journal Article
%A A. V. Khovanskii
%T Regularized Greville method and it's applications in transmission tomography
%J Matematičeskoe modelirovanie
%D 1996
%P 109-118
%V 8
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1996_8_11_a6/
%G ru
%F MM_1996_8_11_a6
A. V. Khovanskii. Regularized Greville method and it's applications in transmission tomography. Matematičeskoe modelirovanie, Tome 8 (1996) no. 11, pp. 109-118. http://geodesic.mathdoc.fr/item/MM_1996_8_11_a6/