Experimental evaluation of the order of uniform convergence for special difference schemes
Matematičeskoe modelirovanie, Tome 7 (1995) no. 6, pp. 85-94
Cet article a éte moissonné depuis la source Math-Net.Ru
Methods of experimental evaluating orders and constants are suggested in the estimate of uniform (with respect to a small parameter) convergence of special difference schemes for solving singularly perturbed boundary value problems. These methods are fit to investigation of boundary value problems for both ordinary and partial differential equations with using non-uniform meshes.
@article{MM_1995_7_6_a5,
author = {I. V. Pershin and V. A. Titov and G. I. Shishkin},
title = {Experimental evaluation of the order of uniform convergence for special difference schemes},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {85--94},
year = {1995},
volume = {7},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1995_7_6_a5/}
}
TY - JOUR AU - I. V. Pershin AU - V. A. Titov AU - G. I. Shishkin TI - Experimental evaluation of the order of uniform convergence for special difference schemes JO - Matematičeskoe modelirovanie PY - 1995 SP - 85 EP - 94 VL - 7 IS - 6 UR - http://geodesic.mathdoc.fr/item/MM_1995_7_6_a5/ LA - ru ID - MM_1995_7_6_a5 ER -
I. V. Pershin; V. A. Titov; G. I. Shishkin. Experimental evaluation of the order of uniform convergence for special difference schemes. Matematičeskoe modelirovanie, Tome 7 (1995) no. 6, pp. 85-94. http://geodesic.mathdoc.fr/item/MM_1995_7_6_a5/