The inverse problem of source reconstruction for convective diffusion equation
Matematičeskoe modelirovanie, Tome 7 (1995) no. 11, pp. 95-108
Cet article a éte moissonné depuis la source Math-Net.Ru
The inverse problem of source reconstruction for convective diffusion equation with constant coefficients in rectangle domain is considered. The algorithms based on Tichonov method of regularization are proposed in order to solve this problem. The numerical calculations and their analysis are carried out.
@article{MM_1995_7_11_a7,
author = {Yu. A. Kriksin and S. N. Plushchev and E. A. Samarskaya and V. F. Tishkin},
title = {The inverse problem of source reconstruction for convective diffusion equation},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {95--108},
year = {1995},
volume = {7},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1995_7_11_a7/}
}
TY - JOUR AU - Yu. A. Kriksin AU - S. N. Plushchev AU - E. A. Samarskaya AU - V. F. Tishkin TI - The inverse problem of source reconstruction for convective diffusion equation JO - Matematičeskoe modelirovanie PY - 1995 SP - 95 EP - 108 VL - 7 IS - 11 UR - http://geodesic.mathdoc.fr/item/MM_1995_7_11_a7/ LA - ru ID - MM_1995_7_11_a7 ER -
%0 Journal Article %A Yu. A. Kriksin %A S. N. Plushchev %A E. A. Samarskaya %A V. F. Tishkin %T The inverse problem of source reconstruction for convective diffusion equation %J Matematičeskoe modelirovanie %D 1995 %P 95-108 %V 7 %N 11 %U http://geodesic.mathdoc.fr/item/MM_1995_7_11_a7/ %G ru %F MM_1995_7_11_a7
Yu. A. Kriksin; S. N. Plushchev; E. A. Samarskaya; V. F. Tishkin. The inverse problem of source reconstruction for convective diffusion equation. Matematičeskoe modelirovanie, Tome 7 (1995) no. 11, pp. 95-108. http://geodesic.mathdoc.fr/item/MM_1995_7_11_a7/