The inverse problem of source reconstruction for convective diffusion equation
Matematičeskoe modelirovanie, Tome 7 (1995) no. 11, pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of source reconstruction for convective diffusion equation with constant coefficients in rectangle domain is considered. The algorithms based on Tichonov method of regularization are proposed in order to solve this problem. The numerical calculations and their analysis are carried out.
@article{MM_1995_7_11_a7,
     author = {Yu. A. Kriksin and S. N. Plushchev and E. A. Samarskaya and V. F. Tishkin},
     title = {The inverse problem of source reconstruction for convective diffusion equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {7},
     number = {11},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1995_7_11_a7/}
}
TY  - JOUR
AU  - Yu. A. Kriksin
AU  - S. N. Plushchev
AU  - E. A. Samarskaya
AU  - V. F. Tishkin
TI  - The inverse problem of source reconstruction for convective diffusion equation
JO  - Matematičeskoe modelirovanie
PY  - 1995
SP  - 95
EP  - 108
VL  - 7
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1995_7_11_a7/
LA  - ru
ID  - MM_1995_7_11_a7
ER  - 
%0 Journal Article
%A Yu. A. Kriksin
%A S. N. Plushchev
%A E. A. Samarskaya
%A V. F. Tishkin
%T The inverse problem of source reconstruction for convective diffusion equation
%J Matematičeskoe modelirovanie
%D 1995
%P 95-108
%V 7
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1995_7_11_a7/
%G ru
%F MM_1995_7_11_a7
Yu. A. Kriksin; S. N. Plushchev; E. A. Samarskaya; V. F. Tishkin. The inverse problem of source reconstruction for convective diffusion equation. Matematičeskoe modelirovanie, Tome 7 (1995) no. 11, pp. 95-108. http://geodesic.mathdoc.fr/item/MM_1995_7_11_a7/