Convergency of parabolic interpolative splines
Matematičeskoe modelirovanie, Tome 7 (1995) no. 11, pp. 77-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Parabolic interpolative splines are investigated with different kinds of boundary conditions: exact boundary derivative or it's difference approximation, periodic and natural, conditions. Asymptotic expressions for their error are found which are valid for small enough stepsize. It is proved that a) natural, periodic and improved difference conditions give the best accuracy, b) arbitrary nonequidistant grid leads to less order of accuracy, but quasi-equidistant grid doesn't. The adaptive grids are constructed which minimize the -error. All conclusions are illustrated with numerical examples.
@article{MM_1995_7_11_a6,
     author = {N. N. Kalitkin and L. V. Kuzmina},
     title = {Convergency of parabolic interpolative splines},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--94},
     publisher = {mathdoc},
     volume = {7},
     number = {11},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1995_7_11_a6/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
TI  - Convergency of parabolic interpolative splines
JO  - Matematičeskoe modelirovanie
PY  - 1995
SP  - 77
EP  - 94
VL  - 7
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1995_7_11_a6/
LA  - ru
ID  - MM_1995_7_11_a6
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. V. Kuzmina
%T Convergency of parabolic interpolative splines
%J Matematičeskoe modelirovanie
%D 1995
%P 77-94
%V 7
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1995_7_11_a6/
%G ru
%F MM_1995_7_11_a6
N. N. Kalitkin; L. V. Kuzmina. Convergency of parabolic interpolative splines. Matematičeskoe modelirovanie, Tome 7 (1995) no. 11, pp. 77-94. http://geodesic.mathdoc.fr/item/MM_1995_7_11_a6/