Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer
Matematičeskoe modelirovanie, Tome 6 (1994) no. 5, pp. 105-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

On rectangular domain $G$, $G=(0,d_1]\times(0,d_2]$, tne Dirichlet problem for singularly perturbed equation of parabolic type $\{\varepsilon\partial_1^2-b(x_1)\partial/\partial x_2\}u(x)=f(x)$, where $b(x_1)=\min[(\sigma^{-1}x_1)^\alpha,1]$ is considered. The partial differential equation is degenerated into the second order ordinary differential equation when $x_1=0$; $x_2$ a time variable, the parameters $\varepsilon$, $\sigma$ can get any value on intervals $(0,1]$ and $[0,d_1/2]$ respectively, $\alpha\in(0,M]$, $M>1$. When $\varepsilon=0$ reduced first order equation is degenerated on the boundary domain for $x_1=0$. The difference scheme (on the grids condensing in the boundary and interior layers) is constructed which converges uniformly with respect to the parameters $\varepsilon$ and $\sigma$. Also grid approximations of the boundary value problems for elliptic equation $\{\varepsilon\Delta-b(x_1)\partial/\partial x_2\}u(x)=f(x)$ are considered. The problems of investigated type appear, for example, when the diffusion processes in moving medium are modelled.
@article{MM_1994_6_5_a8,
     author = {G. I. Shishkin},
     title = {Grid approximation of singularly perturbed equations, degenerated on the boundary. {The} case of sharply changing coefficients in the neighbourhood of the boundary layer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--121},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1994_6_5_a8/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer
JO  - Matematičeskoe modelirovanie
PY  - 1994
SP  - 105
EP  - 121
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1994_6_5_a8/
LA  - ru
ID  - MM_1994_6_5_a8
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer
%J Matematičeskoe modelirovanie
%D 1994
%P 105-121
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1994_6_5_a8/
%G ru
%F MM_1994_6_5_a8
G. I. Shishkin. Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer. Matematičeskoe modelirovanie, Tome 6 (1994) no. 5, pp. 105-121. http://geodesic.mathdoc.fr/item/MM_1994_6_5_a8/