Convergence of approximated methods for incompressible fluid dynamics equations
Matematičeskoe modelirovanie, Tome 6 (1994) no. 3, pp. 101-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using of Lyapunov function method for investigation of the unhomogeneous plasma stability is considered in field of low frequencies. Function is build as the simple integral quadratic form. Framework of function defines character of plasma inhomogeneity by that stability oscillations are realized.
@article{MM_1994_6_3_a8,
     author = {V. A. Galkin and V. V. Russkikh},
     title = {Convergence of approximated methods for incompressible fluid dynamics equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--113},
     year = {1994},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1994_6_3_a8/}
}
TY  - JOUR
AU  - V. A. Galkin
AU  - V. V. Russkikh
TI  - Convergence of approximated methods for incompressible fluid dynamics equations
JO  - Matematičeskoe modelirovanie
PY  - 1994
SP  - 101
EP  - 113
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MM_1994_6_3_a8/
LA  - ru
ID  - MM_1994_6_3_a8
ER  - 
%0 Journal Article
%A V. A. Galkin
%A V. V. Russkikh
%T Convergence of approximated methods for incompressible fluid dynamics equations
%J Matematičeskoe modelirovanie
%D 1994
%P 101-113
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/MM_1994_6_3_a8/
%G ru
%F MM_1994_6_3_a8
V. A. Galkin; V. V. Russkikh. Convergence of approximated methods for incompressible fluid dynamics equations. Matematičeskoe modelirovanie, Tome 6 (1994) no. 3, pp. 101-113. http://geodesic.mathdoc.fr/item/MM_1994_6_3_a8/