The Miln equation for numerical solution the Coulomb two-center problem in continuum spectrum
Matematičeskoe modelirovanie, Tome 5 (1993) no. 4, pp. 89-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method is proposed for numerical solution the Coulomb two-center problem in continuum spectrum. The separation constants and angular Coulomb spheroidal functions are defined as the solutions of the generalized algebraic eigenvalue problem, which is approximated the Sturm–Liouville problem for angular functions by finiteelement method. For calculation the norms and phases of radial Coulomb spheroidal functions the boundary problem for radial functions is reduced to the problem with initial conditions for Milne equation. This conditions are accounted the quasi-classical asymptotic expansion of solution to infinity. The algorithms and programs are more effective then other analogous.
@article{MM_1993_5_4_a5,
     author = {V. I. Puzynin},
     title = {The {Miln} equation for numerical solution the {Coulomb} two-center problem in continuum spectrum},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1993_5_4_a5/}
}
TY  - JOUR
AU  - V. I. Puzynin
TI  - The Miln equation for numerical solution the Coulomb two-center problem in continuum spectrum
JO  - Matematičeskoe modelirovanie
PY  - 1993
SP  - 89
EP  - 104
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1993_5_4_a5/
LA  - ru
ID  - MM_1993_5_4_a5
ER  - 
%0 Journal Article
%A V. I. Puzynin
%T The Miln equation for numerical solution the Coulomb two-center problem in continuum spectrum
%J Matematičeskoe modelirovanie
%D 1993
%P 89-104
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1993_5_4_a5/
%G ru
%F MM_1993_5_4_a5
V. I. Puzynin. The Miln equation for numerical solution the Coulomb two-center problem in continuum spectrum. Matematičeskoe modelirovanie, Tome 5 (1993) no. 4, pp. 89-104. http://geodesic.mathdoc.fr/item/MM_1993_5_4_a5/