Trajectory and schedule
Matematičeskoe modelirovanie, Tome 5 (1993) no. 10, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mutual feedback between trajectory and schedule (as forms of dynamic systems modeling) was discovered and advantage of schedule in observing the innersystem events was exposed. A monotonic transformation was introduced which made possible to use the schedule for modeling the continuous systems, to combine periodicity and trajectory, and to give a new interpretation of wave properties of microparticles. It was proposed a spiral-like (quantum) trajectory of a centre of mass of particle.
@article{MM_1993_5_10_a0,
     author = {A. I. Volgin},
     title = {Trajectory and schedule},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {5},
     number = {10},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1993_5_10_a0/}
}
TY  - JOUR
AU  - A. I. Volgin
TI  - Trajectory and schedule
JO  - Matematičeskoe modelirovanie
PY  - 1993
SP  - 3
EP  - 10
VL  - 5
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1993_5_10_a0/
LA  - ru
ID  - MM_1993_5_10_a0
ER  - 
%0 Journal Article
%A A. I. Volgin
%T Trajectory and schedule
%J Matematičeskoe modelirovanie
%D 1993
%P 3-10
%V 5
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1993_5_10_a0/
%G ru
%F MM_1993_5_10_a0
A. I. Volgin. Trajectory and schedule. Matematičeskoe modelirovanie, Tome 5 (1993) no. 10, pp. 3-10. http://geodesic.mathdoc.fr/item/MM_1993_5_10_a0/