The distribution functions of the $\omega_n^3=n^{3/2}\int_{-\infty}^\infty[S_n(x)-P(x)]^3\,dP(x)$ statistic for small $n$
Matematičeskoe modelirovanie, Tome 4 (1992) no. 8, pp. 85-93
Cet article a éte moissonné depuis la source Math-Net.Ru
A numerical method of the distribution function calculation of a new nonparametric $\omega_n^3$ statistic for small sample sizes is considered. It allowed to calculate with a high accuracy the percentage points for $n=1,2,\dots,10$.
@article{MM_1992_4_8_a7,
author = {P. V. Zrelov and V. V. Ivanov},
title = {The distribution functions of the $\omega_n^3=n^{3/2}\int_{-\infty}^\infty[S_n(x)-P(x)]^3\,dP(x)$ statistic for small~$n$},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {85--93},
year = {1992},
volume = {4},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1992_4_8_a7/}
}
TY - JOUR
AU - P. V. Zrelov
AU - V. V. Ivanov
TI - The distribution functions of the $\omega_n^3=n^{3/2}\int_{-\infty}^\infty[S_n(x)-P(x)]^3\,dP(x)$ statistic for small $n$
JO - Matematičeskoe modelirovanie
PY - 1992
SP - 85
EP - 93
VL - 4
IS - 8
UR - http://geodesic.mathdoc.fr/item/MM_1992_4_8_a7/
LA - ru
ID - MM_1992_4_8_a7
ER -
%0 Journal Article
%A P. V. Zrelov
%A V. V. Ivanov
%T The distribution functions of the $\omega_n^3=n^{3/2}\int_{-\infty}^\infty[S_n(x)-P(x)]^3\,dP(x)$ statistic for small $n$
%J Matematičeskoe modelirovanie
%D 1992
%P 85-93
%V 4
%N 8
%U http://geodesic.mathdoc.fr/item/MM_1992_4_8_a7/
%G ru
%F MM_1992_4_8_a7
P. V. Zrelov; V. V. Ivanov. The distribution functions of the $\omega_n^3=n^{3/2}\int_{-\infty}^\infty[S_n(x)-P(x)]^3\,dP(x)$ statistic for small $n$. Matematičeskoe modelirovanie, Tome 4 (1992) no. 8, pp. 85-93. http://geodesic.mathdoc.fr/item/MM_1992_4_8_a7/