Asymptotical deduction of the ambipolar diffusion equation and boundary conditions in semiconductor physics
Matematičeskoe modelirovanie, Tome 4 (1992) no. 8, pp. 66-74
Cet article a éte moissonné depuis la source Math-Net.Ru
By means of boundary layer functions method the asymptotics is constructed for the solution of the singularly perturbed system of differential equations describing distribution of nonbalanced charge carriers in thin semiconductor plate with conductivity close to a natural one. It is shown that for main term of expansion well-known ambipolar diffusion equation in semiconductor physics arose. The boundary conditions found are different from those which are used in some physical papers.
@article{MM_1992_4_8_a5,
author = {V. F. Butuzov and L. V. Kalachev},
title = {Asymptotical deduction of the ambipolar diffusion equation and boundary conditions in semiconductor physics},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {66--74},
year = {1992},
volume = {4},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1992_4_8_a5/}
}
TY - JOUR AU - V. F. Butuzov AU - L. V. Kalachev TI - Asymptotical deduction of the ambipolar diffusion equation and boundary conditions in semiconductor physics JO - Matematičeskoe modelirovanie PY - 1992 SP - 66 EP - 74 VL - 4 IS - 8 UR - http://geodesic.mathdoc.fr/item/MM_1992_4_8_a5/ LA - ru ID - MM_1992_4_8_a5 ER -
V. F. Butuzov; L. V. Kalachev. Asymptotical deduction of the ambipolar diffusion equation and boundary conditions in semiconductor physics. Matematičeskoe modelirovanie, Tome 4 (1992) no. 8, pp. 66-74. http://geodesic.mathdoc.fr/item/MM_1992_4_8_a5/