Optimum $L$-decremented rosebrock schemes with complex coefficients for stiff ODE
Matematičeskoe modelirovanie, Tome 4 (1992) no. 8, pp. 47-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The extension of coefficients of Rosenbrock type schemes to the complex numbers allows to construct methods with good $L$-decrementation. Therefore such kind of two-stages schemes were investigated theoretically in detail for the case of autonomous system. There were found out several sets of coefficients which lead to the methods of accuracy $O(\tau^4)$ and of highest $L$-decrementation for stability function as well as for internal stability function.
@article{MM_1992_4_8_a3,
     author = {P. D. Shirkov},
     title = {Optimum $L$-decremented rosebrock schemes with complex coefficients for stiff {ODE}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--57},
     publisher = {mathdoc},
     volume = {4},
     number = {8},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1992_4_8_a3/}
}
TY  - JOUR
AU  - P. D. Shirkov
TI  - Optimum $L$-decremented rosebrock schemes with complex coefficients for stiff ODE
JO  - Matematičeskoe modelirovanie
PY  - 1992
SP  - 47
EP  - 57
VL  - 4
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1992_4_8_a3/
LA  - ru
ID  - MM_1992_4_8_a3
ER  - 
%0 Journal Article
%A P. D. Shirkov
%T Optimum $L$-decremented rosebrock schemes with complex coefficients for stiff ODE
%J Matematičeskoe modelirovanie
%D 1992
%P 47-57
%V 4
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1992_4_8_a3/
%G ru
%F MM_1992_4_8_a3
P. D. Shirkov. Optimum $L$-decremented rosebrock schemes with complex coefficients for stiff ODE. Matematičeskoe modelirovanie, Tome 4 (1992) no. 8, pp. 47-57. http://geodesic.mathdoc.fr/item/MM_1992_4_8_a3/