Results of qualitive analysis of invariant solutions of distributied models for nonideal adsorbate layer's equilibrium states
Matematičeskoe modelirovanie, Tome 4 (1992) no. 6, pp. 80-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains the results of qualitive analysis of a certain class of invariant solutions of the distributed model of equilibrium state of nonideal adsorbate monolayer. Subregions of existence, uniqueness and multiplicity of solutions, that described superstructures $C(2\times2)/(100)$, $P(1\times2)/(100)$, $(3\times\sqrt3)^*R30^0$, $(3\times\sqrt3)R30^0$ are defined in the region of possible parameter values. Qualitively different dependences of the layer chemical potential from the density of layer are constructed numerically.
@article{MM_1992_4_6_a5,
     author = {G. G. Yelenin},
     title = {Results of qualitive analysis of invariant solutions of distributied models for nonideal adsorbate layer's equilibrium states},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {80--98},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1992_4_6_a5/}
}
TY  - JOUR
AU  - G. G. Yelenin
TI  - Results of qualitive analysis of invariant solutions of distributied models for nonideal adsorbate layer's equilibrium states
JO  - Matematičeskoe modelirovanie
PY  - 1992
SP  - 80
EP  - 98
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1992_4_6_a5/
LA  - ru
ID  - MM_1992_4_6_a5
ER  - 
%0 Journal Article
%A G. G. Yelenin
%T Results of qualitive analysis of invariant solutions of distributied models for nonideal adsorbate layer's equilibrium states
%J Matematičeskoe modelirovanie
%D 1992
%P 80-98
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1992_4_6_a5/
%G ru
%F MM_1992_4_6_a5
G. G. Yelenin. Results of qualitive analysis of invariant solutions of distributied models for nonideal adsorbate layer's equilibrium states. Matematičeskoe modelirovanie, Tome 4 (1992) no. 6, pp. 80-98. http://geodesic.mathdoc.fr/item/MM_1992_4_6_a5/