Numerical methods for the problems of a difracting light beams propa gation in chemically active gases with thermal diffusion
Matematičeskoe modelirovanie, Tome 4 (1992) no. 2, pp. 95-109
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper nonlinear conservative finite difference scheme for interaction of a laser beam with two component chemical gas in the case of difraction and self-influence of laser radiation as well as thermal diffusion of gas components are suggested. The existance of bounded and unity solution of finite difference scheme and its convergence to enough smooth solution of the differential problem are proved.
@article{MM_1992_4_2_a8,
author = {M. I. Kalinichenko and S. V. Polyakov},
title = {Numerical methods for the problems of a~difracting light beams propa gation in chemically active gases with thermal diffusion},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {95--109},
year = {1992},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1992_4_2_a8/}
}
TY - JOUR AU - M. I. Kalinichenko AU - S. V. Polyakov TI - Numerical methods for the problems of a difracting light beams propa gation in chemically active gases with thermal diffusion JO - Matematičeskoe modelirovanie PY - 1992 SP - 95 EP - 109 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/MM_1992_4_2_a8/ LA - ru ID - MM_1992_4_2_a8 ER -
%0 Journal Article %A M. I. Kalinichenko %A S. V. Polyakov %T Numerical methods for the problems of a difracting light beams propa gation in chemically active gases with thermal diffusion %J Matematičeskoe modelirovanie %D 1992 %P 95-109 %V 4 %N 2 %U http://geodesic.mathdoc.fr/item/MM_1992_4_2_a8/ %G ru %F MM_1992_4_2_a8
M. I. Kalinichenko; S. V. Polyakov. Numerical methods for the problems of a difracting light beams propa gation in chemically active gases with thermal diffusion. Matematičeskoe modelirovanie, Tome 4 (1992) no. 2, pp. 95-109. http://geodesic.mathdoc.fr/item/MM_1992_4_2_a8/