Numerical methods for the problems of a~difracting light beams propa gation in chemically active gases with thermal diffusion
Matematičeskoe modelirovanie, Tome 4 (1992) no. 2, pp. 95-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper nonlinear conservative finite difference scheme for interaction of a laser beam with two component chemical gas in the case of difraction and self-influence of laser radiation as well as thermal diffusion of gas components are suggested. The existance of bounded and unity solution of finite difference scheme and its convergence to enough smooth solution of the differential problem are proved.
@article{MM_1992_4_2_a8,
     author = {M. I. Kalinichenko and S. V. Polyakov},
     title = {Numerical methods for the problems of a~difracting light beams propa gation in chemically active gases with thermal diffusion},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1992_4_2_a8/}
}
TY  - JOUR
AU  - M. I. Kalinichenko
AU  - S. V. Polyakov
TI  - Numerical methods for the problems of a~difracting light beams propa gation in chemically active gases with thermal diffusion
JO  - Matematičeskoe modelirovanie
PY  - 1992
SP  - 95
EP  - 109
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1992_4_2_a8/
LA  - ru
ID  - MM_1992_4_2_a8
ER  - 
%0 Journal Article
%A M. I. Kalinichenko
%A S. V. Polyakov
%T Numerical methods for the problems of a~difracting light beams propa gation in chemically active gases with thermal diffusion
%J Matematičeskoe modelirovanie
%D 1992
%P 95-109
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1992_4_2_a8/
%G ru
%F MM_1992_4_2_a8
M. I. Kalinichenko; S. V. Polyakov. Numerical methods for the problems of a~difracting light beams propa gation in chemically active gases with thermal diffusion. Matematičeskoe modelirovanie, Tome 4 (1992) no. 2, pp. 95-109. http://geodesic.mathdoc.fr/item/MM_1992_4_2_a8/