On the application of geometric parallelism principle to $(\alpha-\beta)$-iteration algorithm
Matematičeskoe modelirovanie, Tome 3 (1991) no. 3, pp. 123-129
Cet article a éte moissonné depuis la source Math-Net.Ru
The possibility and effectiveness of parallel realization of $(\alpha-\beta)$-iteration algorithm for elliptic problem is considered in the paper. Finite difference Dirichlet problem for Poisson equation on a rectangular grid is examined as a test. Underrelaxation method applied to $(\alpha-\beta)$-iteration algorithm is presented.
@article{MM_1991_3_3_a12,
author = {B. N. Chetverushkin and N. G. Churbanova},
title = {On the application of geometric parallelism principle to $(\alpha-\beta)$-iteration algorithm},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {123--129},
year = {1991},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1991_3_3_a12/}
}
TY - JOUR AU - B. N. Chetverushkin AU - N. G. Churbanova TI - On the application of geometric parallelism principle to $(\alpha-\beta)$-iteration algorithm JO - Matematičeskoe modelirovanie PY - 1991 SP - 123 EP - 129 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/MM_1991_3_3_a12/ LA - ru ID - MM_1991_3_3_a12 ER -
B. N. Chetverushkin; N. G. Churbanova. On the application of geometric parallelism principle to $(\alpha-\beta)$-iteration algorithm. Matematičeskoe modelirovanie, Tome 3 (1991) no. 3, pp. 123-129. http://geodesic.mathdoc.fr/item/MM_1991_3_3_a12/