Exact discrete nonstanionary radiation conditions for spherical system of coordinates in absence of azimuthal symmetry
Matematičeskoe modelirovanie, Tome 3 (1991) no. 2, pp. 30-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact discrete partial nonstationary conditions are derived for Maxwell's equations in the absence of azimuthal symmetry. Form of the conditions is sensitive to the type of finitedifference scheme being in usage for solving Maxwel's system. These conditions can be used in the case of inhomogeneous and anisotropic medium in outer domain and are effective in applications. The theorem of converging the numerical solution to the analitical one is proved.
@article{MM_1991_3_2_a2,
     author = {{\CYRA}. D. Poezd and A. G. Sveshnikov and S. A. Yakunin},
     title = {Exact discrete nonstanionary radiation conditions for spherical system of coordinates in absence of azimuthal symmetry},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {30--41},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1991_3_2_a2/}
}
TY  - JOUR
AU  - А. D. Poezd
AU  - A. G. Sveshnikov
AU  - S. A. Yakunin
TI  - Exact discrete nonstanionary radiation conditions for spherical system of coordinates in absence of azimuthal symmetry
JO  - Matematičeskoe modelirovanie
PY  - 1991
SP  - 30
EP  - 41
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1991_3_2_a2/
LA  - ru
ID  - MM_1991_3_2_a2
ER  - 
%0 Journal Article
%A А. D. Poezd
%A A. G. Sveshnikov
%A S. A. Yakunin
%T Exact discrete nonstanionary radiation conditions for spherical system of coordinates in absence of azimuthal symmetry
%J Matematičeskoe modelirovanie
%D 1991
%P 30-41
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1991_3_2_a2/
%G ru
%F MM_1991_3_2_a2
А. D. Poezd; A. G. Sveshnikov; S. A. Yakunin. Exact discrete nonstanionary radiation conditions for spherical system of coordinates in absence of azimuthal symmetry. Matematičeskoe modelirovanie, Tome 3 (1991) no. 2, pp. 30-41. http://geodesic.mathdoc.fr/item/MM_1991_3_2_a2/