Fast iterative methods for solving in the real arithmetic the discrete Helmholtz equation with a~complex coefficient
Matematičeskoe modelirovanie, Tome 3 (1991) no. 1, pp. 115-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two algorithms are developed to reduce discrete boundary value problems for the elliptic equation with a complex coefficient to linear systems involving only the real part of the solution. The factors of the convergence of the proposed iterative methods are bounded by 0,1716 and 0,0312 (uniformely upon the magnitude of the imaginary part of a complex coefficient).
@article{MM_1991_3_1_a12,
     author = {A. B. Kycherov and A. Bastis},
     title = {Fast iterative methods for solving in the real arithmetic the discrete {Helmholtz} equation with a~complex coefficient},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {115--121},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1991_3_1_a12/}
}
TY  - JOUR
AU  - A. B. Kycherov
AU  - A. Bastis
TI  - Fast iterative methods for solving in the real arithmetic the discrete Helmholtz equation with a~complex coefficient
JO  - Matematičeskoe modelirovanie
PY  - 1991
SP  - 115
EP  - 121
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1991_3_1_a12/
LA  - ru
ID  - MM_1991_3_1_a12
ER  - 
%0 Journal Article
%A A. B. Kycherov
%A A. Bastis
%T Fast iterative methods for solving in the real arithmetic the discrete Helmholtz equation with a~complex coefficient
%J Matematičeskoe modelirovanie
%D 1991
%P 115-121
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1991_3_1_a12/
%G ru
%F MM_1991_3_1_a12
A. B. Kycherov; A. Bastis. Fast iterative methods for solving in the real arithmetic the discrete Helmholtz equation with a~complex coefficient. Matematičeskoe modelirovanie, Tome 3 (1991) no. 1, pp. 115-121. http://geodesic.mathdoc.fr/item/MM_1991_3_1_a12/