Fast iterative methods for solving in the real arithmetic the discrete Helmholtz equation with a complex coefficient
Matematičeskoe modelirovanie, Tome 3 (1991) no. 1, pp. 115-121
Cet article a éte moissonné depuis la source Math-Net.Ru
Two algorithms are developed to reduce discrete boundary value problems for the elliptic equation with a complex coefficient to linear systems involving only the real part of the solution. The factors of the convergence of the proposed iterative methods are bounded by 0,1716 and 0,0312 (uniformely upon the magnitude of the imaginary part of a complex coefficient).
@article{MM_1991_3_1_a12,
author = {A. B. Kycherov and A. Bastis},
title = {Fast iterative methods for solving in the real arithmetic the discrete {Helmholtz} equation with a~complex coefficient},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {115--121},
year = {1991},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1991_3_1_a12/}
}
TY - JOUR AU - A. B. Kycherov AU - A. Bastis TI - Fast iterative methods for solving in the real arithmetic the discrete Helmholtz equation with a complex coefficient JO - Matematičeskoe modelirovanie PY - 1991 SP - 115 EP - 121 VL - 3 IS - 1 UR - http://geodesic.mathdoc.fr/item/MM_1991_3_1_a12/ LA - ru ID - MM_1991_3_1_a12 ER -
%0 Journal Article %A A. B. Kycherov %A A. Bastis %T Fast iterative methods for solving in the real arithmetic the discrete Helmholtz equation with a complex coefficient %J Matematičeskoe modelirovanie %D 1991 %P 115-121 %V 3 %N 1 %U http://geodesic.mathdoc.fr/item/MM_1991_3_1_a12/ %G ru %F MM_1991_3_1_a12
A. B. Kycherov; A. Bastis. Fast iterative methods for solving in the real arithmetic the discrete Helmholtz equation with a complex coefficient. Matematičeskoe modelirovanie, Tome 3 (1991) no. 1, pp. 115-121. http://geodesic.mathdoc.fr/item/MM_1991_3_1_a12/