On some stochastic models of moderately dense gas
Matematičeskoe modelirovanie, Tome 3 (1991) no. 12, pp. 99-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kinetic equation which has time-nonlocal collision integral and describes the process of moderately dense gas relaxation is into consideration. It is proved that the solution of the equation can be approximated with any accuracy by the solutions of the stochastic equations with the Poisson measure. An exact solution of the kinetic equation is found.
@article{MM_1991_3_12_a9,
     author = {S. L. Popyrin},
     title = {On some stochastic models of moderately dense gas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--106},
     publisher = {mathdoc},
     volume = {3},
     number = {12},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1991_3_12_a9/}
}
TY  - JOUR
AU  - S. L. Popyrin
TI  - On some stochastic models of moderately dense gas
JO  - Matematičeskoe modelirovanie
PY  - 1991
SP  - 99
EP  - 106
VL  - 3
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1991_3_12_a9/
LA  - ru
ID  - MM_1991_3_12_a9
ER  - 
%0 Journal Article
%A S. L. Popyrin
%T On some stochastic models of moderately dense gas
%J Matematičeskoe modelirovanie
%D 1991
%P 99-106
%V 3
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1991_3_12_a9/
%G ru
%F MM_1991_3_12_a9
S. L. Popyrin. On some stochastic models of moderately dense gas. Matematičeskoe modelirovanie, Tome 3 (1991) no. 12, pp. 99-106. http://geodesic.mathdoc.fr/item/MM_1991_3_12_a9/