Moving of surfaces method which preserves spherical parts
Matematičeskoe modelirovanie, Tome 2 (1990) no. 6, pp. 97-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is necessary to find the location of boundaries for every time when one is computing a nonsteady problem of mathematical physics with moving boundaries. The boundaries are surfaces if solution depends on three space variables. Assume that a plot of one boundary is a part of sphere and all points of this plot move with identical velocities when $t=0$. Then during some time the plot will be a part of sphere. In this paper an algorithm is suggested of moving surfaces preserving spherical plots under indicated conditions.
@article{MM_1990_2_6_a9,
     author = {A. S. Shvedov},
     title = {Moving of surfaces method which preserves spherical parts},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--101},
     publisher = {mathdoc},
     volume = {2},
     number = {6},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1990_2_6_a9/}
}
TY  - JOUR
AU  - A. S. Shvedov
TI  - Moving of surfaces method which preserves spherical parts
JO  - Matematičeskoe modelirovanie
PY  - 1990
SP  - 97
EP  - 101
VL  - 2
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1990_2_6_a9/
LA  - ru
ID  - MM_1990_2_6_a9
ER  - 
%0 Journal Article
%A A. S. Shvedov
%T Moving of surfaces method which preserves spherical parts
%J Matematičeskoe modelirovanie
%D 1990
%P 97-101
%V 2
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1990_2_6_a9/
%G ru
%F MM_1990_2_6_a9
A. S. Shvedov. Moving of surfaces method which preserves spherical parts. Matematičeskoe modelirovanie, Tome 2 (1990) no. 6, pp. 97-101. http://geodesic.mathdoc.fr/item/MM_1990_2_6_a9/