On the Kramers–Kronig dispersion relations for the complex reflection coefficient of a layered dispersive medium
Matematičeskoe modelirovanie, Tome 2 (1990) no. 6, pp. 90-96
A possibility to obtain the frequency dependence of phase $\varphi(\omega)$ of the complex reflection coefficient form the spectral dependence of its modulus $\rho(\omega)$ is considered for the case of a plasma–like flat–layered dispersive medium. Basing on the study of analytical properties of the reflection coefficient $r(\omega)=\rho(\omega)\exp[i\varphi(\omega)]$ the sufficient conditions for the absence of zeros of the function $r(\omega)$ in the upper half plane of the complex frequency $\omega$ are formulated. In these conditions a standard amplitude-phase dispersion relation of Kramers–Kronig used for analysis of a homogeneous media holds true.
@article{MM_1990_2_6_a8,
author = {N. A. Denisova and A. V. Rezvov},
title = {On the {Kramers{\textendash}Kronig} dispersion relations for the complex reflection coefficient of a~layered dispersive medium},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {90--96},
year = {1990},
volume = {2},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1990_2_6_a8/}
}
TY - JOUR AU - N. A. Denisova AU - A. V. Rezvov TI - On the Kramers–Kronig dispersion relations for the complex reflection coefficient of a layered dispersive medium JO - Matematičeskoe modelirovanie PY - 1990 SP - 90 EP - 96 VL - 2 IS - 6 UR - http://geodesic.mathdoc.fr/item/MM_1990_2_6_a8/ LA - ru ID - MM_1990_2_6_a8 ER -
%0 Journal Article %A N. A. Denisova %A A. V. Rezvov %T On the Kramers–Kronig dispersion relations for the complex reflection coefficient of a layered dispersive medium %J Matematičeskoe modelirovanie %D 1990 %P 90-96 %V 2 %N 6 %U http://geodesic.mathdoc.fr/item/MM_1990_2_6_a8/ %G ru %F MM_1990_2_6_a8
N. A. Denisova; A. V. Rezvov. On the Kramers–Kronig dispersion relations for the complex reflection coefficient of a layered dispersive medium. Matematičeskoe modelirovanie, Tome 2 (1990) no. 6, pp. 90-96. http://geodesic.mathdoc.fr/item/MM_1990_2_6_a8/