The unimproveable decrease of dimension for the system of equations of equilibrated states of non-ideal multicomponental lattice gas with respect to a set of sublattices
Matematičeskoe modelirovanie, Tome 2 (1990) no. 6, pp. 141-156
Cet article a éte moissonné depuis la source Math-Net.Ru
The reduction of the non-linear system of equations that describes the states of equilibrium of multicomponental lattice gas at any quantity of equivalent sublattices for quazychemical approximation is done. The number of initial equations is proportional to the second power of components. The number of equations of reduced system is proportional to the number of components.
@article{MM_1990_2_6_a14,
author = {G. G. Yelenin},
title = {The unimproveable decrease of dimension for the system of equations of equilibrated states of non-ideal multicomponental lattice gas with respect to a~set of sublattices},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {141--156},
year = {1990},
volume = {2},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1990_2_6_a14/}
}
TY - JOUR AU - G. G. Yelenin TI - The unimproveable decrease of dimension for the system of equations of equilibrated states of non-ideal multicomponental lattice gas with respect to a set of sublattices JO - Matematičeskoe modelirovanie PY - 1990 SP - 141 EP - 156 VL - 2 IS - 6 UR - http://geodesic.mathdoc.fr/item/MM_1990_2_6_a14/ LA - ru ID - MM_1990_2_6_a14 ER -
%0 Journal Article %A G. G. Yelenin %T The unimproveable decrease of dimension for the system of equations of equilibrated states of non-ideal multicomponental lattice gas with respect to a set of sublattices %J Matematičeskoe modelirovanie %D 1990 %P 141-156 %V 2 %N 6 %U http://geodesic.mathdoc.fr/item/MM_1990_2_6_a14/ %G ru %F MM_1990_2_6_a14
G. G. Yelenin. The unimproveable decrease of dimension for the system of equations of equilibrated states of non-ideal multicomponental lattice gas with respect to a set of sublattices. Matematičeskoe modelirovanie, Tome 2 (1990) no. 6, pp. 141-156. http://geodesic.mathdoc.fr/item/MM_1990_2_6_a14/