On the numerical solution of $2m$-th elliptic problems by least squares method using splines on rectangular grids
Matematičeskoe modelirovanie, Tome 2 (1990) no. 4, pp. 121-132
Cet article a éte moissonné depuis la source Math-Net.Ru
The least squares method is proposed for numerical solution of $2m$-th – order elliptic problems with arbitrary boundary conditions. The method utilizes spline approximation on retangular grids, which are not adjusted to the shapes of the region under study. The results of investigations of 2-nd and 4-th order problems related to the elastisity theory are represented.
@article{MM_1990_2_4_a9,
author = {N. A. Marchenko and V. I. Pavlov},
title = {On the numerical solution of~$2m$-th elliptic problems by least squares method using splines on rectangular grids},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {121--132},
year = {1990},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1990_2_4_a9/}
}
TY - JOUR AU - N. A. Marchenko AU - V. I. Pavlov TI - On the numerical solution of $2m$-th elliptic problems by least squares method using splines on rectangular grids JO - Matematičeskoe modelirovanie PY - 1990 SP - 121 EP - 132 VL - 2 IS - 4 UR - http://geodesic.mathdoc.fr/item/MM_1990_2_4_a9/ LA - ru ID - MM_1990_2_4_a9 ER -
%0 Journal Article %A N. A. Marchenko %A V. I. Pavlov %T On the numerical solution of $2m$-th elliptic problems by least squares method using splines on rectangular grids %J Matematičeskoe modelirovanie %D 1990 %P 121-132 %V 2 %N 4 %U http://geodesic.mathdoc.fr/item/MM_1990_2_4_a9/ %G ru %F MM_1990_2_4_a9
N. A. Marchenko; V. I. Pavlov. On the numerical solution of $2m$-th elliptic problems by least squares method using splines on rectangular grids. Matematičeskoe modelirovanie, Tome 2 (1990) no. 4, pp. 121-132. http://geodesic.mathdoc.fr/item/MM_1990_2_4_a9/