Hamiltonian methods of Runge–Kutta type and their variational interpretation
Matematičeskoe modelirovanie, Tome 2 (1990) no. 4, pp. 78-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical Methods of canonical type for solution of Hamilton systems are constructed. Discrete analogue of principle of least action is proved.
@article{MM_1990_2_4_a6,
     author = {Yu. B. Suris},
     title = {Hamiltonian methods of {Runge{\textendash}Kutta} type and their variational interpretation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {78--87},
     year = {1990},
     volume = {2},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1990_2_4_a6/}
}
TY  - JOUR
AU  - Yu. B. Suris
TI  - Hamiltonian methods of Runge–Kutta type and their variational interpretation
JO  - Matematičeskoe modelirovanie
PY  - 1990
SP  - 78
EP  - 87
VL  - 2
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MM_1990_2_4_a6/
LA  - ru
ID  - MM_1990_2_4_a6
ER  - 
%0 Journal Article
%A Yu. B. Suris
%T Hamiltonian methods of Runge–Kutta type and their variational interpretation
%J Matematičeskoe modelirovanie
%D 1990
%P 78-87
%V 2
%N 4
%U http://geodesic.mathdoc.fr/item/MM_1990_2_4_a6/
%G ru
%F MM_1990_2_4_a6
Yu. B. Suris. Hamiltonian methods of Runge–Kutta type and their variational interpretation. Matematičeskoe modelirovanie, Tome 2 (1990) no. 4, pp. 78-87. http://geodesic.mathdoc.fr/item/MM_1990_2_4_a6/