Iterative method of quasisolution of 1st kind integral equation at the difraction theory
Matematičeskoe modelirovanie, Tome 2 (1990) no. 4, pp. 133-142
Cet article a éte moissonné depuis la source Math-Net.Ru
The question of the solution of difraction problems in $\mathbf R^2$ was considered. Quasisolution of boundary problems has been constructed by using boundary integral equations with a dissipative operators. Dissipative properties gave opportunity to construct the iterative procedure for the solution of the 1-st kind integral equations.
@article{MM_1990_2_4_a10,
author = {Yu. A. Eremin and A. G. Sveshnikov},
title = {Iterative method of quasisolution of 1st kind integral equation at the difraction theory},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {133--142},
year = {1990},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1990_2_4_a10/}
}
TY - JOUR AU - Yu. A. Eremin AU - A. G. Sveshnikov TI - Iterative method of quasisolution of 1st kind integral equation at the difraction theory JO - Matematičeskoe modelirovanie PY - 1990 SP - 133 EP - 142 VL - 2 IS - 4 UR - http://geodesic.mathdoc.fr/item/MM_1990_2_4_a10/ LA - ru ID - MM_1990_2_4_a10 ER -
Yu. A. Eremin; A. G. Sveshnikov. Iterative method of quasisolution of 1st kind integral equation at the difraction theory. Matematičeskoe modelirovanie, Tome 2 (1990) no. 4, pp. 133-142. http://geodesic.mathdoc.fr/item/MM_1990_2_4_a10/