Transverse bistability and multistability in nonlinear optical systems with two-dimensional feedback
Matematičeskoe modelirovanie, Tome 2 (1990) no. 2, pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Processes of multistable spatial structures formation are investigated using methods of mathematical modelling. The proposed mathematical model of the phenomena is in a good agreement with the supplied physical experiment results.
@article{MM_1990_2_2_a2,
     author = {M. A. Vorontsov and N. I. Zheleznykh},
     title = {Transverse bistability and multistability in nonlinear optical systems with two-dimensional feedback},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1990_2_2_a2/}
}
TY  - JOUR
AU  - M. A. Vorontsov
AU  - N. I. Zheleznykh
TI  - Transverse bistability and multistability in nonlinear optical systems with two-dimensional feedback
JO  - Matematičeskoe modelirovanie
PY  - 1990
SP  - 31
EP  - 38
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1990_2_2_a2/
LA  - ru
ID  - MM_1990_2_2_a2
ER  - 
%0 Journal Article
%A M. A. Vorontsov
%A N. I. Zheleznykh
%T Transverse bistability and multistability in nonlinear optical systems with two-dimensional feedback
%J Matematičeskoe modelirovanie
%D 1990
%P 31-38
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1990_2_2_a2/
%G ru
%F MM_1990_2_2_a2
M. A. Vorontsov; N. I. Zheleznykh. Transverse bistability and multistability in nonlinear optical systems with two-dimensional feedback. Matematičeskoe modelirovanie, Tome 2 (1990) no. 2, pp. 31-38. http://geodesic.mathdoc.fr/item/MM_1990_2_2_a2/