Difference schemes for non-stable problems
Matematičeskoe modelirovanie, Tome 2 (1990) no. 11, pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with some basic methods for non-stable mathematical physics problems. The example of ill-posed model problem for parabolic equation of second order is considered. Stability of this schemes is studied by usage of general results of $rho$-stability theory. The regularisation of finitedifference schemes is similar to some modification of the quasy-inversion method for differential problems.
@article{MM_1990_2_11_a8,
     author = {A. A. Samarskii and P. N. Vabishchevich},
     title = {Difference schemes for non-stable problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {2},
     number = {11},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1990_2_11_a8/}
}
TY  - JOUR
AU  - A. A. Samarskii
AU  - P. N. Vabishchevich
TI  - Difference schemes for non-stable problems
JO  - Matematičeskoe modelirovanie
PY  - 1990
SP  - 89
EP  - 98
VL  - 2
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1990_2_11_a8/
LA  - ru
ID  - MM_1990_2_11_a8
ER  - 
%0 Journal Article
%A A. A. Samarskii
%A P. N. Vabishchevich
%T Difference schemes for non-stable problems
%J Matematičeskoe modelirovanie
%D 1990
%P 89-98
%V 2
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1990_2_11_a8/
%G ru
%F MM_1990_2_11_a8
A. A. Samarskii; P. N. Vabishchevich. Difference schemes for non-stable problems. Matematičeskoe modelirovanie, Tome 2 (1990) no. 11, pp. 89-98. http://geodesic.mathdoc.fr/item/MM_1990_2_11_a8/