Difference schemes for non-stable problems
Matematičeskoe modelirovanie, Tome 2 (1990) no. 11, pp. 89-98
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with some basic methods for non-stable mathematical physics problems. The example of ill-posed model problem for parabolic equation of second order is considered. Stability of this schemes is studied by usage of general results of $rho$-stability theory. The regularisation of finitedifference schemes is similar to some modification of the quasy-inversion method for differential problems.
@article{MM_1990_2_11_a8,
author = {A. A. Samarskii and P. N. Vabishchevich},
title = {Difference schemes for non-stable problems},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {89--98},
year = {1990},
volume = {2},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1990_2_11_a8/}
}
A. A. Samarskii; P. N. Vabishchevich. Difference schemes for non-stable problems. Matematičeskoe modelirovanie, Tome 2 (1990) no. 11, pp. 89-98. http://geodesic.mathdoc.fr/item/MM_1990_2_11_a8/