On existence of non-radial solutions of quasilinear elliptic equations
Matematičeskoe modelirovanie, Tome 2 (1990) no. 10, pp. 67-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method to find a self-localized in plane non-radial solutions of equation $\Delta u+g(u)=0$ is suggested. Numerical algorithm for the search of these solutions is set forth.
@article{MM_1990_2_10_a7,
     author = {G. L. Alfimov and N. E. Kulagin},
     title = {On existence of non-radial solutions of quasilinear elliptic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--79},
     publisher = {mathdoc},
     volume = {2},
     number = {10},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1990_2_10_a7/}
}
TY  - JOUR
AU  - G. L. Alfimov
AU  - N. E. Kulagin
TI  - On existence of non-radial solutions of quasilinear elliptic equations
JO  - Matematičeskoe modelirovanie
PY  - 1990
SP  - 67
EP  - 79
VL  - 2
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1990_2_10_a7/
LA  - ru
ID  - MM_1990_2_10_a7
ER  - 
%0 Journal Article
%A G. L. Alfimov
%A N. E. Kulagin
%T On existence of non-radial solutions of quasilinear elliptic equations
%J Matematičeskoe modelirovanie
%D 1990
%P 67-79
%V 2
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1990_2_10_a7/
%G ru
%F MM_1990_2_10_a7
G. L. Alfimov; N. E. Kulagin. On existence of non-radial solutions of quasilinear elliptic equations. Matematičeskoe modelirovanie, Tome 2 (1990) no. 10, pp. 67-79. http://geodesic.mathdoc.fr/item/MM_1990_2_10_a7/