On eigenfunctions of $p$-adic and discrete Fourier transforms
Matematičeskoe modelirovanie, Tome 2 (1990) no. 10, pp. 120-131
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper eigenfunctions and eigenvalues of a $p$-adic Fourier Transform are considered. The completeness and orthonormality of some system of these vectors is proved. These results may be interpreted for the Discrete Fourier Transform (DFT), the fact that allow to determine DFT eigenvectors for some dimensions and to offer a new algorithm as an alternative to the so-called “rapid algorithm”.
@article{MM_1990_2_10_a12,
author = {A. S. Pospelov},
title = {On eigenfunctions of $p$-adic and discrete {Fourier} transforms},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {120--131},
year = {1990},
volume = {2},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1990_2_10_a12/}
}
A. S. Pospelov. On eigenfunctions of $p$-adic and discrete Fourier transforms. Matematičeskoe modelirovanie, Tome 2 (1990) no. 10, pp. 120-131. http://geodesic.mathdoc.fr/item/MM_1990_2_10_a12/