Алгебры Ли со~«слабыми» коммутативными свойствами и~задача об~однородности
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 85 (2024) no. 1, pp. 129-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2024_85_1_a9,
     author = {A. V. Atanov and A. V. Loboda},
     title = {{\CYRA}{\cyrl}{\cyrg}{\cyre}{\cyrb}{\cyrr}{\cyrery} {{\CYRL}{\cyri}} {\cyrs}{\cyro}~{\guillemotleft}{\cyrs}{\cyrl}{\cyra}{\cyrb}{\cyrery}{\cyrm}{\cyri}{\guillemotright} {\cyrk}{\cyro}{\cyrm}{\cyrm}{\cyru}{\cyrt}{\cyra}{\cyrt}{\cyri}{\cyrv}{\cyrn}{\cyrery}{\cyrm}{\cyri} {\cyrs}{\cyrv}{\cyro}{\cyrishrt}{\cyrs}{\cyrt}{\cyrv}{\cyra}{\cyrm}{\cyri} {\cyri}~{\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyra} {\cyro}{\cyrb}~{\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrr}{\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri}},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {129--155},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2024_85_1_a9/}
}
TY  - JOUR
AU  - A. V. Atanov
AU  - A. V. Loboda
TI  - Алгебры Ли со~«слабыми» коммутативными свойствами и~задача об~однородности
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2024
SP  - 129
EP  - 155
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2024_85_1_a9/
LA  - ru
ID  - MMO_2024_85_1_a9
ER  - 
%0 Journal Article
%A A. V. Atanov
%A A. V. Loboda
%T Алгебры Ли со~«слабыми» коммутативными свойствами и~задача об~однородности
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2024
%P 129-155
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2024_85_1_a9/
%G ru
%F MMO_2024_85_1_a9
A. V. Atanov; A. V. Loboda. Алгебры Ли со~«слабыми» коммутативными свойствами и~задача об~однородности. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 85 (2024) no. 1, pp. 129-155. http://geodesic.mathdoc.fr/item/MMO_2024_85_1_a9/

[1] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes. I”, Ann. Math. Pura Appl., 11:4 (1932), 17–90 | MR

[2] Loboda A. V., “Golomorfno odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$”, Tr. MMO, 81, no. 2, 2020, 205–280

[3] Loboda A. V., “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Matem. sb., 192:12 (2001), 3–24 | DOI

[4] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Tr. MIAN, 235 (2001), 114–142

[5] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201:1 (2008), 1–82 | DOI | MR

[6] Doubrov B., Medvedev A., The D., “Homogeneous Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Math. Z., 297:1–2 (2021), 669–709 | DOI | MR

[7] Doubrov B., Merker J., The D., “Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, IMRN, 2022, no. 19, 15421–15473 | DOI | MR

[8] Kolář M., Kossovskiy I., Sykes D., “New examples of 2-nondegenerate real hypersurfaces in $\mathbb{C}^N$ with arbitrary nilpotent symbols”, J. Lond. Math. Soc. (2), 110:2 (2024), e12962, arXiv: 2304.00619 | DOI | MR

[9] Kruglikov B., Santi A., “On 3-nondegenerate CR manifolds in dimension 7 (I): the transitive case”, J. Reine Angew. Math. (to appear) , arXiv: 2302.04513 | DOI | MR

[10] Mozhei N. P., “Odnorodnye podmnogoobraziya v chetyrekhmernoi affinnoi i proektivnoi geometrii”, Izv. vuzov. Matem., 2000, no. 7, 41–52 | MR

[11] Atanov A. V., Loboda A. V., “On degenerate orbits of real Lie algebras in multidimensional complex spaces”, Russ. J. Math. Phys., 30:4 (2023), 432–442 | DOI | MR

[12] Parry A. R., A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals, Master's thesis, Utah State Univ., Logan, 2007

[13] Le V. A., Nguyen T. A., Nguyen T. T. C., Nguyen T. T. M., Vo T. N., “Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals”, Comm. Algebra, 51:5 (2023), 1866–1885 | DOI | MR

[14] Loboda A. V., Kaverina V. K., “O vyrozhdennosti orbit nilpotentnykh algebr Li”, Ufimsk. matem. zhurn., 14:1 (2022), 57–83

[15] Loboda A. V., “O 7-mernykh algebrakh Li, dopuskayuschikh Levi-nevyrozhdennye orbity v $\mathbb{C}^4$”, Tr. MMO, 84, no. 2, 2023, 205–230

[16] Loboda A. V., Akopyan R. S., Krutskikh V. V., “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 360–372 | MR

[17] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR

[18] Loboda A. V., Akopyan R. S., “Ob orbitakh v $\mathbb{C}^4$ 7-mernykh algebr Li, imeyuschikh dve abelevy podalgebry”, Ufimsk. matem. zhurn. (to appear)

[19] Atanov A. V., Loboda A. V., “O nevyrozhdennykh orbitakh 7-mernykh algebr Li, soderzhaschikh 3-mernyi abelev ideal”, Sovr. matem. Fund. napr., 70, no. 4, 2024, 517–532 | MR