Критерий локальности матричных солитонных уравнений
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 2, pp. 231-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2023_84_2_a2,
     author = {M. A. Shumkin},
     title = {{\CYRK}{\cyrr}{\cyri}{\cyrt}{\cyre}{\cyrr}{\cyri}{\cyrishrt} {\cyrl}{\cyro}{\cyrk}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrm}{\cyra}{\cyrt}{\cyrr}{\cyri}{\cyrch}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyro}{\cyrl}{\cyri}{\cyrt}{\cyro}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrishrt}},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {231--242},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a2/}
}
TY  - JOUR
AU  - M. A. Shumkin
TI  - Критерий локальности матричных солитонных уравнений
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2023
SP  - 231
EP  - 242
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a2/
LA  - ru
ID  - MMO_2023_84_2_a2
ER  - 
%0 Journal Article
%A M. A. Shumkin
%T Критерий локальности матричных солитонных уравнений
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2023
%P 231-242
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a2/
%G ru
%F MMO_2023_84_2_a2
M. A. Shumkin. Критерий локальности матричных солитонных уравнений. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 2, pp. 231-242. http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a2/

[1] I. Z. Golubchik, V. V. Sokolov, “Integriruemye uravneniya na $\mathbb{Z}$-graduirovannykh algebrakh Li”, TMF, 112:3 (1997), 375–383 | DOI

[2] A. V. Domrin, “Golomorfnye resheniya solitonnykh uravnenii”, Tr. MMO, 82, no. 2, 2021, 227–312 | Zbl

[3] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | Zbl

[4] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Integriruemye sistemy. I, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravl., 4, VINITI, M., 1985, 179–285

[5] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi teorii rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22

[6] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986

[7] M. A. Shumkin, “O resheniyakh matrichnykh solitonnykh uravnenii”, TMF, 215:1 (2023), 3–15 | DOI | Zbl

[8] A. Degasperis, S. Lombardo, “Multicomponent integrable wave equations. I. Darboux-dressing transformation”, J. Phys. A, 40:5 (2007), 961–977 | DOI | MR | Zbl

[9] A. Degasperis, S. Lombardo, M. Sommacal, “Integrability and linear stability of nonlinear waves”, J. Nonlinear Sci., 28:4 (2018), 1251–1291 | DOI | MR | Zbl

[10] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Comm. Math. Phys., 89:3 (1983), 427–443 | DOI | MR | Zbl

[11] M. F. de Groot, T. J. Hollowood, J. L. Miramontes, “Generalized Drinfel'd–Sokolov hierarchies”, Comm. Math. Phys., 145:1 (1992), 57–84 | DOI | MR | Zbl

[12] C.-L. Terng, K. Uhlenbeck, “Bäcklund transformations and loop group actions”, Comm. Pure Appl. Math., 53:1 (2000), 1–75 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] G. Wilson, “Commuting flows and conservation laws for Lax equations”, Math. Proc. Cambridge Phil. Soc., 86:1 (1979), 131–143 | DOI | MR | Zbl

[14] G. Wilson, “The modified Lax and two-dimensional Toda lattice equations associated with simple Lie algebras”, Ergodic Theory Dynam. Systems, 1:3 (1981), 361–380 | DOI | MR | Zbl