Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2023_84_2_a1, author = {A. V. Loboda}, title = {{\CYRO} 7-{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyra}{\cyrl}{\cyrg}{\cyre}{\cyrb}{\cyrr}{\cyra}{\cyrh} {{\CYRL}{\cyri},} {\cyrd}{\cyro}{\cyrp}{\cyru}{\cyrs}{\cyrk}{\cyra}{\cyryu}{\cyrshch}{\cyri}{\cyrh} {{\CYRL}{\cyre}{\cyrv}{\cyri}-{\cyrn}{\cyre}{\cyrv}{\cyrery}{\cyrr}{\cyro}{\cyrzh}{\cyrd}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyre}} {\cyro}{\cyrr}{\cyrb}{\cyri}{\cyrt}{\cyrery} {\cyrv}~$\mathbb{C}^4$}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {205--230}, publisher = {mathdoc}, volume = {84}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a1/} }
TY - JOUR AU - A. V. Loboda TI - О 7-мерных алгебрах Ли, допускающих Леви-невырожденные орбиты в~$\mathbb{C}^4$ JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2023 SP - 205 EP - 230 VL - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a1/ LA - ru ID - MMO_2023_84_2_a1 ER -
A. V. Loboda. О 7-мерных алгебрах Ли, допускающих Леви-невырожденные орбиты в~$\mathbb{C}^4$. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 2, pp. 205-230. http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a1/
[1] A. V. Atanov, “Orbity razlozhimykh 7-mernykh algebr Li s $\mathfrak{sl}(2)$-podalgebroi”, Ufimsk. matem. zhurn., 14:1 (2022), 3–22
[2] R. L. Bishop, R. D. Zh. Krittenden, Geometriya mnogoobrazii, Mir, M., 1967
[3] V. Krutskikh, A. V. Loboda, “Ob orbitakh v $ \mathbb{C}^4$ 7-mernykh algebr Li”, Mater. mezhdunar. konf. VZMSh «Sovremennye metody teorii funktsii i smezhnye problemy», Izd. dom VGU, Voronezh, 2023, 220–222
[4] A. V. Loboda, “Golomorfno odnorodnye veschestvennye giperpoverkhnosti v $ \mathbb{C}^3 $”, Tr. MMO, 81, no. 2, 2020, 205–280 | Zbl
[5] A. V. Loboda, “O zadache opisaniya golomorfno odnorodnykh veschestvennykh giperpoverkhnostei chetyrekhmernykh kompleksnykh prostranstv”, Trudy MIAN, 311, 2020, 194–212 | DOI | Zbl
[6] A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “O 7-mernykh algebrakh golomorfnykh vektornykh polei v $ \mathbb{C}^4 $, imeyuschikh 5-mernyi abelev ideal”, Dalnevost. matem. zhurn., 23:1 (2023), 55–80 | Zbl
[7] A. V. Loboda, V. K. Kaverina, “O vyrozhdennosti orbit nilpotentnykh algebr Li”, Ufimsk. matem. zhurn., 14:1 (2022), 57–83 | Zbl
[8] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 2, Funktsii neskolkikh peremennykh, Nauka, M., 1985
[9] A. V. Atanov, A. V. Loboda, “On degenerate orbits of real Lie algebras in multidimensional complex spaces”, Russ. J. Math. Phys., 30:4 (2023), 432–442 | DOI | MR
[10] M. S. Baouendi, P. Ebenfelt, L. P. Rothshild, Real submanifolds in complex space and their mappings, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl
[11] V. K. Beloshapka, I. G. Kossovskiy, “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[12] T. Bloom, I. Graham, “On «type» conditions for generic real submanifolds of $ \mathbb{C}^n $”, Invent. Math., 40:3 (1977), 217–243 | DOI | MR
[13] E. Cartan, “Sur la géometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl., 11:1 (1933), 17–90 | DOI | MR
[14] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl
[15] A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, Zhurn. SFU. Ser. matem. i fiz., 13:3 (2020), 360–372 | MR
[16] A. V. Loboda, “On the tubular structure of holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^4 $”, Lobachevskii J. Math., 44:4 (2023), 1373–1382 | DOI | MR | Zbl
[17] A. Parry, A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals, arXiv: 1311.6069
[18] V. A. Le, T. A. Nguyen, T. T. C. Nguyen, T. T. M. Nguyen, T. N. Vo, Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals, arXiv: 2107.03990 | MR