О 7-мерных алгебрах Ли, допускающих Леви-невырожденные орбиты в~$\mathbb{C}^4$
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 2, pp. 205-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2023_84_2_a1,
     author = {A. V. Loboda},
     title = {{\CYRO} 7-{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyra}{\cyrl}{\cyrg}{\cyre}{\cyrb}{\cyrr}{\cyra}{\cyrh} {{\CYRL}{\cyri},} {\cyrd}{\cyro}{\cyrp}{\cyru}{\cyrs}{\cyrk}{\cyra}{\cyryu}{\cyrshch}{\cyri}{\cyrh} {{\CYRL}{\cyre}{\cyrv}{\cyri}-{\cyrn}{\cyre}{\cyrv}{\cyrery}{\cyrr}{\cyro}{\cyrzh}{\cyrd}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyre}} {\cyro}{\cyrr}{\cyrb}{\cyri}{\cyrt}{\cyrery} {\cyrv}~$\mathbb{C}^4$},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {205--230},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a1/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - О 7-мерных алгебрах Ли, допускающих Леви-невырожденные орбиты в~$\mathbb{C}^4$
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2023
SP  - 205
EP  - 230
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a1/
LA  - ru
ID  - MMO_2023_84_2_a1
ER  - 
%0 Journal Article
%A A. V. Loboda
%T О 7-мерных алгебрах Ли, допускающих Леви-невырожденные орбиты в~$\mathbb{C}^4$
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2023
%P 205-230
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a1/
%G ru
%F MMO_2023_84_2_a1
A. V. Loboda. О 7-мерных алгебрах Ли, допускающих Леви-невырожденные орбиты в~$\mathbb{C}^4$. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 2, pp. 205-230. http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a1/

[1] A. V. Atanov, “Orbity razlozhimykh 7-mernykh algebr Li s $\mathfrak{sl}(2)$-podalgebroi”, Ufimsk. matem. zhurn., 14:1 (2022), 3–22

[2] R. L. Bishop, R. D. Zh. Krittenden, Geometriya mnogoobrazii, Mir, M., 1967

[3] V. Krutskikh, A. V. Loboda, “Ob orbitakh v $ \mathbb{C}^4$ 7-mernykh algebr Li”, Mater. mezhdunar. konf. VZMSh «Sovremennye metody teorii funktsii i smezhnye problemy», Izd. dom VGU, Voronezh, 2023, 220–222

[4] A. V. Loboda, “Golomorfno odnorodnye veschestvennye giperpoverkhnosti v $ \mathbb{C}^3 $”, Tr. MMO, 81, no. 2, 2020, 205–280 | Zbl

[5] A. V. Loboda, “O zadache opisaniya golomorfno odnorodnykh veschestvennykh giperpoverkhnostei chetyrekhmernykh kompleksnykh prostranstv”, Trudy MIAN, 311, 2020, 194–212 | DOI | Zbl

[6] A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “O 7-mernykh algebrakh golomorfnykh vektornykh polei v $ \mathbb{C}^4 $, imeyuschikh 5-mernyi abelev ideal”, Dalnevost. matem. zhurn., 23:1 (2023), 55–80 | Zbl

[7] A. V. Loboda, V. K. Kaverina, “O vyrozhdennosti orbit nilpotentnykh algebr Li”, Ufimsk. matem. zhurn., 14:1 (2022), 57–83 | Zbl

[8] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 2, Funktsii neskolkikh peremennykh, Nauka, M., 1985

[9] A. V. Atanov, A. V. Loboda, “On degenerate orbits of real Lie algebras in multidimensional complex spaces”, Russ. J. Math. Phys., 30:4 (2023), 432–442 | DOI | MR

[10] M. S. Baouendi, P. Ebenfelt, L. P. Rothshild, Real submanifolds in complex space and their mappings, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl

[11] V. K. Beloshapka, I. G. Kossovskiy, “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[12] T. Bloom, I. Graham, “On «type» conditions for generic real submanifolds of $ \mathbb{C}^n $”, Invent. Math., 40:3 (1977), 217–243 | DOI | MR

[13] E. Cartan, “Sur la géometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl., 11:1 (1933), 17–90 | DOI | MR

[14] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201:1 (2008), 1–82 | DOI | MR | Zbl

[15] A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, Zhurn. SFU. Ser. matem. i fiz., 13:3 (2020), 360–372 | MR

[16] A. V. Loboda, “On the tubular structure of holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^4 $”, Lobachevskii J. Math., 44:4 (2023), 1373–1382 | DOI | MR | Zbl

[17] A. Parry, A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals, arXiv: 1311.6069

[18] V. A. Le, T. A. Nguyen, T. T. C. Nguyen, T. T. M. Nguyen, T. N. Vo, Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals, arXiv: 2107.03990 | MR