Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2023_84_1_a1, author = {V. B. Levenshtam}, title = {{\CYRM}{\cyre}{\cyrt}{\cyro}{\cyrd} {\cyru}{\cyrs}{\cyrr}{\cyre}{\cyrd}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrd}{\cyrl}{\cyrya} {\cyrk}{\cyrv}{\cyra}{\cyrz}{\cyri}{\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrg}{\cyri}{\cyrp}{\cyre}{\cyrr}{\cyrb}{\cyro}{\cyrl}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyrishrt} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm}{\cyrery}. {{\CYRA}{\cyrs}{\cyri}{\cyrm}{\cyrp}{\cyrt}{\cyro}{\cyrt}{\cyri}{\cyrk}{\cyra}} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrishrt}}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {25--35}, publisher = {mathdoc}, volume = {84}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2023_84_1_a1/} }
TY - JOUR AU - V. B. Levenshtam TI - Метод усреднения для квазилинейной гиперболической системы. Асимптотика решений JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2023 SP - 25 EP - 35 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2023_84_1_a1/ LA - ru ID - MMO_2023_84_1_a1 ER -
V. B. Levenshtam. Метод усреднения для квазилинейной гиперболической системы. Асимптотика решений. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 1, pp. 25-35. http://geodesic.mathdoc.fr/item/MMO_2023_84_1_a1/
[1] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974
[2] L. V. Gargyants, A. Yu. Goritskii, E. Yu. Panov, “Postroenie neogranichennykh razryvnykh reshenii skalyarnykh zakonov sokhraneniya pri pomoschi preobrazovaniya Lezhandra”, Matem. sb., 212:4 (2021), 29–44 | DOI | Zbl
[3] A. K. Kapikyan (A. K. Nazarov), V. B. Levenshtam, “Uravneniya v chastnykh proizvodnykh pervogo poryadka s bolshimi vysokochastotnymi slagaemymi”, Zhurn. vychisl. mat. i mat. fiziki, 48:11 (2008), 2024–2041
[4] V. B. Levenshtam, Differentsialnye uravneniya s bolshimi vysokochastotnymi slagaemymi, Izd-vo YuFU, Rostov n/D, 2010
[5] V. B. Levenshtam, “Obosnovanie metoda usredneniya dlya sistemy uravnenii s operatorom Nave–Stoksa v glavnoi chasti”, Algebra i analiz, 26:1 (2014), 94–127
[6] Yu. A. Mitropolskii, Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971
[7] Yu. A. Mitropolskii, G. P. Khoma, “O printsipe usredneniya dlya giperbolicheskikh uravnenii vdol kharakteristik”, Ukr. matem. zhurnal, 22:5 (1970), 600–610 | Zbl
[8] A. K. Nazarov, Asimptoticheskii analiz evolyutsionnykh vysokochastotnykh zadach, Diss. ... kandidata fiz.-mat. nauk, Rostov n/D, 2017
[9] I. G. Petrovskii, Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Fizmatlit, M., 2009
[10] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii, Nauka, M., 1978
[11] V. L. Khatskevich, “O printsipe usredneniya v periodicheskoi po vremeni zadache dlya uravnenii Nave–Stoksa s bystro ostsilliruyuschei massovoi siloi”, Matem. zametki, 99:5 (2016), 764–777 | DOI | Zbl
[12] G. P. Khoma, “Teorema ob usrednenii dlya giperbolicheskikh sistem pervogo poryadka”, Ukr. matem. zhurnal, 22:5 (1970), 699–704 | Zbl
[13] V. I. Yudovich, “Vibrodinamika sistem so svyazyami”, DAN, 354:5 (1997), 622–624
[14] A.-L. Dalibard, “Homogenization of non-linear scalar conservation laws”, Arch. Ration. Mech. anal., 192:1 (2009), 117–164 | DOI | MR | Zbl