Multilevel interpolations for the generalized Nikishin system on a tree graph
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 345-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a multilevel interpolation problem for a system of Markov functions defined by a tree graph. The normality of all indices has been proven. Asymptotic properties are studied in terms of the vector equilibrium problem for logarithmic potential.
@article{MMO_2022_83_2_a6,
     author = {V. G. Lysov},
     title = {Multilevel interpolations for the generalized {Nikishin} system on a tree graph},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {345--361},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a6/}
}
TY  - JOUR
AU  - V. G. Lysov
TI  - Multilevel interpolations for the generalized Nikishin system on a tree graph
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 345
EP  - 361
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a6/
LA  - ru
ID  - MMO_2022_83_2_a6
ER  - 
%0 Journal Article
%A V. G. Lysov
%T Multilevel interpolations for the generalized Nikishin system on a tree graph
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 345-361
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a6/
%G ru
%F MMO_2022_83_2_a6
V. G. Lysov. Multilevel interpolations for the generalized Nikishin system on a tree graph. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 345-361. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a6/

[1] A. I. Aptekarev, “Asimptotika polinomov sovmestnoi ortogonalnosti v sluchae Andzhelesko”, Matem. sb., 136(178):1(5) (1988), 56–84 | Zbl

[2] A. I. Aptekarev, “Silnaya asimptotika mnogochlenov sovmestnoi ortogonalnosti dlya sistem Nikishina”, Matem. sb., 190:5 (1999), 3–44 | DOI | MR | Zbl

[3] A. I. Aptekarev, S. A. Denisov, M. L. Yattselev, “Diskretnyi operator Shredingera na grafe-dereve, potentsialy Anzhelesko i ikh vozmuscheniya”, Analiz i matematicheskaya fizika, Sb. statei, Trudy MIAN, 311, MIAN, M., 2020, 5–13 | DOI

[4] A. I. Aptekarev, A. E. Koielaars, “Approksimatsii Ermita–Pade i ansambli sovmestno ortogonalnykh mnogochlenov”, UMN, 66:6(402) (2011), 123–190 | DOI | MR | Zbl

[5] A. I. Aptekarev, G. Lopes Lagomasino, A. Martines-Finkelshtein, “O sistemakh Nikishina s diskretnymi komponentami i slaboi asimptotike mnogochlenov sovmestnoi ortogonalnosti”, UMN, 72:3(435) (2017), 3–64 | DOI | MR | Zbl

[6] A. I. Aptekarev, V. G. Lysov, “Sistemy markovskikh funktsii, generiruemye grafami, i asimptotika ikh approksimatsii Ermita–Pade”, Matem. sb., 201:2 (2010), 29–78 | DOI | Zbl

[7] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | Zbl

[8] A. I. Aptekarev, V. G. Lysov, “Mnogourovnevaya interpolyatsiya sistemy Nikishina i ogranichennost matrits Yakobi na binarnom dereve”, UMN, 76:4(460) (2021), 179–180 | DOI | MR

[9] A. I. Bogolyubskii, V. G. Lysov, “O konstruktivnom reshenii odnoi vektornoi zadachi ravnovesiya”, Dokl. RAN. Matem., inform., prots. upr., 491 (2020), 15–18 | DOI | MR

[10] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii ”, Matem. sb., 105(147):2 (1978), 147–163 | MR | Zbl

[11] A. A. Gonchar, E. A. Rakhmanov, “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN SSSR, 157, 1981, 31–48 | Zbl

[12] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125(167):1(9) (1984), 117–127 | MR

[13] A. A. Gonchar, E. A. Rakhmanov, “O zadache ravnovesiya dlya vektornykh potentsialov”, UMN, 40:4(244) (1985), 155–156 | MR | Zbl

[14] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 | Zbl

[15] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | DOI | MR | Zbl

[16] N. R. Ikonomov, S. P. Suetin, “Skalyarnaya zadacha ravnovesiya i predelnoe raspredelenie nulei polinomov Ermita–Pade II tipa”, Sovremennye problemy matematicheskoi i teoreticheskoi fiziki, Sb. statei, Trudy MIAN, 309, MIAN, M., 2020, 174–197 | DOI | MR

[17] V. A. Kalyagin, “Ob odnom klasse polinomov, opredelyaemykh dvumya sootnosheniyami ortogonalnosti”, Matem. sb., 110(152):4(12) (1979), 609–627 | MR

[18] A. V. Komlov, “Polinomialnaya $m$-sistema Ermita–Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, Matem. sb., 212:12 (2021), 40–76 | DOI | MR

[19] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Approksimatsii Ermita–Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, UMN, 72:4(436) (2017), 95–130 | DOI | MR

[20] M. A. Lapik, “O semeistvakh vektornykh mer, ravnovesnykh vo vneshnem pole”, Matem. sb., 206:2 (2015), 41–56 | DOI | MR | Zbl

[21] I. A. Lopatin, “Ob obobschenii skalyarnogo podkhoda k zadache o raspredelenii nulei polinomov Ermita–Pade dlya sistemy Nikishina”, Matem. sb., 213 (2022) (to appear)

[22] G. Lopes Lagomasino, V. Van Asse, “Metod zadachi Rimana–Gilberta v primenenii k sisteme Nikishina”, Matem. sb., 209:7 (2018), 106–138 | DOI | MR

[23] V. G. Lysov, “Silnaya asimptotika approksimatsii Ermita–Pade dlya sistemy stiltesovskikh funktsii s vesom Lagerra”, Matem. sb., 196:12 (2005), 99–122 | DOI | Zbl

[24] V. G. Lysov, “Approksimatsii Ermita–Pade smeshannogo tipa dlya sistemy Nikishina”, Analiz i matematicheskaya fizika, Sb. statei, Trudy MIAN, 311, MIAN, M., 2020, 213–227 | DOI

[25] V. G. Lysov, D. N. Tulyakov, “O vektornoi teoretiko-potentsialnoi zadache ravnovesiya s matritsei Anzhelesko”, Kompleksnyi analiz i ego prilozheniya, Sb. statei, Trudy MIAN, 298, Nauka, M., 2017, 185–215 | DOI

[26] E. M. Nikishin, “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113(155):4(12) (1980), 499–519 | MR | Zbl

[27] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[28] E. A. Rakhmanov, “Raspredelenie nulei polinomov Ermita–Pade v sluchae Anzhelesko”, UMN, 73:3(441) (2018), 89–156 | DOI | MR | Zbl

[29] E. A. Rakhmanov, S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. sb., 204:9 (2013), 115–160 | DOI | MR | Zbl

[30] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, UMN, 57:3(345) (2002), 99–134 | DOI | MR | Zbl

[31] V. N. Sorokin, “Ob integrale Salikhova”, Tr. MMO, 77, no. 1, 2016, 131–154 | Zbl

[32] V. N. Sorokin, “Mnogotochechnye approksimatsii Ermita–Pade dlya trekh beta-funktsii”, Tr. MMO, 79, no. 1, 2018, 133–153 | Zbl

[33] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR | Zbl

[34] V. N. Sorokin, “Ob odnom obobschenii diskretnoi formuly Rodriga dlya mnogochlenov Meiksnera”, Matem. sb., 213:11 (2022), 79–101 | DOI | MR

[35] S. P. Suetin, “O novom podkhode k zadache o raspredelenii nulei polinomov Ermita–Pade dlya sistemy Nikishina”, Kompleksnyi analiz, matematicheskaya fizika i prilozheniya, Sb. statei, Tr. MIAN, 301, Nauka, M., 2018, 259–275 | DOI

[36] S. P. Suetin, “Ob ekvivalentnosti skalyarnoi i vektornoi zadach ravnovesiya dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. zametki, 106:6 (2019), 904–916 | DOI | Zbl

[37] E. M. Chirka, “Ravnovesnye mery na kompaktnoi rimanovoi poverkhnosti”, Matematicheskaya fizika i prilozheniya, Sb. statei, Trudy MIAN, 306, MIAN, M., 2019, 313–351 | DOI

[38] E. M. Chirka, Teoriya potentsiala i kompleksnyi analiz na kompaktnoi rimanovoi poverkhnosti, MIAN, M., 2022 (to appear)

[39] A. Angelesco, “Sur deux extensions des fractions continues algébriques”, C. R. Acad. Sci. Paris., 168 (1919), 262–265

[40] A. I. Aptekarev, S. A. Denisov, M. L. Yattselev, “Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials”, Trans. Amer. Math. Soc., 373:2 (2020), 875–917 | DOI | MR | Zbl

[41] A. I. Aptekarev, S. A. Denisov, M. L. Yattselev, “Jacobi matrices on trees generated by Angelesco system: asymptotics of coefficients and essential spectrum”, J. Spectral Theory, 11:4 (2011), 1511–1597 | DOI | MR

[42] A. I. Aptekarev, V. A. Kalyagin, G. López Lagomasino, I. A. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1–2 (2006), 346–370 | DOI | MR | Zbl

[43] A. I. Aptekarev, V. A. Kalyagin, V. G. Lysov, D. N. Toulyakov, “Equilibrium of vector potentials and uniformization of the algebraic curves of genus 0”, J. Comput. Appl. Math., 233:3 (2009), 602–616 | DOI | MR | Zbl

[44] A. I. Aptekarev, M. A. Lapik, V. G. Lysov, “Direct and inverse problems for vector logarithmic potentials with external fields”, Anal. Math. Phys., 9:3 (2019), 919–935 | DOI | MR | Zbl

[45] W. Van Assche, J. S. Geronimo, A. B. J. Kuijlaars, “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special functions 2000: current perspective and future directions, NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 23–59 | MR | Zbl

[46] W. Van Assche, J. S. Geronimo, P. Iliev, “Alpert multiwavelets and Legendre–Angelesco multiple orthogonal polynomials”, SIAM J. Math. Anal., 49:1 (2017), 626–645 | DOI | MR | Zbl

[47] W. Van Assche, M. Leurs, “Jacobi–Angelesco multiple orthogonal polynomials on an $r$-star”, Constr. Approx., 51:2 (2020), 353–381 | DOI | MR | Zbl

[48] W. Van Assche, A. Martínez-Finkelshtein, What is... a multiple orthogonal polynomial?, Notices Amer. Math. Soc., 63:9 (2016), 1029–1031 | DOI | MR | Zbl

[49] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses”, Constr. Approx., 37:1 (2013), 101–134 | DOI | MR | Zbl

[50] M. Bertola, M. Gekhtman, J. Szmigielski, “The Cauchy two-matrix model”, Comm. Math. Phys., 287:3 (2009), 983–1014 | DOI | MR | Zbl

[51] M. Bertola, M. Gekhtman, J. Szmigielski, “Cauchy biorthogonal polynomials”, J. Approx. Theory, 162:4 (2010), 832–867 | DOI | MR | Zbl

[52] M. Bertola, M. Gekhtman, J. Szmigielski, “Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model”, J. Math. Phys., 54:4 (2013) | DOI | MR | Zbl

[53] M. Bertola, T. Bothner, “Universality conjecture and results for a model of several coupled positive-definite matrices”, Comm. Math. Phys., 337:3 (2015), 1077–1141 | DOI | MR | Zbl

[54] J. G. Criado del Rey, A. B. J. Kuijlaars, “A vector equilibrium problem for symmetrically located point charges on a sphere”, Constr. Approx., 55:3 (2022), 775–827 | DOI | MR | Zbl

[55] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and perturbation theory (Rome, 1998), World Sci. Publ., River Edge, NJ, 1999, 23–37 | MR | Zbl

[56] S. Delvaux, A. B. J. Kuijlaars, “A graph-based equilibrium problem for the limiting distribution of non-intersecting Brownian motions at low temperature”, Constr. Approx., 32:3 (2010), 467–512 | DOI | MR | Zbl

[57] S. A. Denisov, M. L. Yattselev, “Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality”, Adv. Math., 396 (2022), 108114 | DOI | MR

[58] A. Hardy, A. B. J. Kuijlaars, “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 170 (2013), 44–58 | DOI | MR | Zbl

[59] U. Fidalgo Prieto, A. López García, G. López Lagomasino, V. N. Sorokin, “Mixed type multiple orthogonal polynomials for two Nikishin systems”, Constr. Approx., 32:2 (2010), 255–306 | DOI | MR | Zbl

[60] U. Fidalgo Prieto, G. López Lagomasino, “Nikishin systems are perfect”, Constr. Approx., 34:3 (2011), 297–356 | DOI | MR | Zbl

[61] U. Fidalgo, G. López Lagomasino, S. Medina Peralta, “Asymptotic of Cauchy biorthogonal polynomials”, Mediterr. J. Math., 17:1 (2020), 22 | DOI | MR | Zbl

[62] L. G. González Ricardo, G. López Lagomasino, “Strong asymptotic of Cauchy biorthogonal polynomials and orthogonal polynomials with varying measure”, Constr. Approx, 2022 (to appear) | MR

[63] L. G. González Ricardo, G. López Lagomasino, S. Medina Peralta, “Logarithmic asymptotic of multi-level Hermite–Padé polynomials”, Integral Transform. Spec. Funct., 32:5–8 (2021), 493–511 | DOI | MR | Zbl

[64] L. G. González Ricardo, G. López Lagomasino, S. Medina Peralta, “On the convergence of multi-level Hermite–Padé approximants”, Phys. D, 440 (2022), 133487 | DOI | MR

[65] A. B. J. Kuijlaars, “Multiple orthogonal polynomial ensembles”, Recent trends in orthogonal polynomials and approximation theory, Contemporary Mathematics, 507, AMS, Providence, RI, 2010, 155–176 | DOI | MR | Zbl

[66] A. B. J. Kuijlaars, “A vector equilibrium problem for the Muttalib–Borodin biorthogonal ensemble”, SIGMA, 12 (2016), 065 | MR | Zbl

[67] A. B. J. Kuijlaars, P. Román, “Recurrence relations and vector equilibrium problems arising from a model of non-intersecting squared Bessel paths”, J. Approx. Theory, 162 (2010), 2048–2077 | DOI | MR | Zbl

[68] G. López Lagomasino, S. Medina Peralta, “On the convergence of type I Hermite–Padé approximants”, Adv. Math., 273 (2015), 124–148 | DOI | MR | Zbl

[69] G. López Lagomasino, S. Medina Peralta, J. Szmigielski, “Mixed type Hermite–Padé approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838 | DOI | MR | Zbl

[70] V. Lysov, F. Wielonsky, “Strong asymptotics for multiple Laguerre polynomials”, Constr. Approx., 28:1 (2008), 61–111 | DOI | MR | Zbl

[71] K. Mahler, “Perfect systems”, Compos. Math., 19 (1968), 95–166 | MR | Zbl

[72] A. Markoff, “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19:1 (1895), 93–104 | DOI | MR

[73] “A. Martínez-Finkelshtein, G. L. F. Silva”, Adv. Math., 349 (2019), Critical measures for vector energy: asymptotics of non-diagonal multiple orthogonal polynomials for a cubic weight | MR

[74] M. Yattselev, “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Canad. J. Math., 68:5 (2016), 1159–1200 | DOI | MR