@article{MMO_2022_83_2_a3,
author = {L. Oeding},
title = {A translation of {{\textquotedblleft}Classification} of four-vectors of an 8-dimensional space,{\textquotedblright} by {Antonyan,} {L.} {V.,} with an appendix by the translator},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {269--296},
year = {2022},
volume = {83},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a3/}
}
TY - JOUR AU - L. Oeding TI - A translation of “Classification of four-vectors of an 8-dimensional space,” by Antonyan, L. V., with an appendix by the translator JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 269 EP - 296 VL - 83 IS - 2 UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a3/ LA - en ID - MMO_2022_83_2_a3 ER -
%0 Journal Article %A L. Oeding %T A translation of “Classification of four-vectors of an 8-dimensional space,” by Antonyan, L. V., with an appendix by the translator %J Trudy Moskovskogo matematičeskogo obŝestva %D 2022 %P 269-296 %V 83 %N 2 %U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a3/ %G en %F MMO_2022_83_2_a3
L. Oeding. A translation of “Classification of four-vectors of an 8-dimensional space,” by Antonyan, L. V., with an appendix by the translator. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 269-296. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a3/
[1] L. V. Antonyan, “Klassifikatsiya chetyrevektorov vosmimernogo prostranstva”, Tr. sem. po vekt. i tenz. analizu, XX, MGU, M., 1981, 144–161
[2] L. V. Antonyan, A. G. Elashvili, “Klassifikatsiya spinorov razmernosti shestnadtsat”, Tr. Tbil. matem. in-ta, 70 (1982), 5–23 | Zbl
[3] E. B. Vinberg, “O klassifikatsii nilpotentnykh elementov graduirovannykh algebr Li”, DAN SSSR, 225:4 (1975), 745–748 | MR | Zbl
[4] E. B. Vinberg, “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl
[5] E. B. Vinberg, A. G. Elashvili, “Klassifikatsiya tpivektopov 9-mepnogo ppostpanstva”, Tp. sem. po vekt. i tenz. analizu, XVIII, MGU, M., 1978, 197–233
[6] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30(72):2 (1952), 349–462 | Zbl
[7] V. L. Popov, “Konus nul-form Gilberta”, Teoriya chisel, algebra i algebraicheskaya geometriya, Sb. statei, Trudy MIAN, 241, Nauka, M., 2003, 192–209
[8] C. Chevalley, “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl
[9] W. A. de Graaf, “Computing representatives of nilpotent orbits of $\theta$-groups”, J. Symbolic Comput., 46:4 (2011), 438–458 | DOI | MR | Zbl
[10] W. A. de Graaf, Computation with linear algebraic groups, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017 | MR
[11] W. A. de Graaf, SLA. Computing with simple Lie algebras. Version 1.5.3, The GAP Team, 2019 (Refereed GAP package)
[12] W. A. de Graaf, QuaGroup, Computations with quantum groups. Version 1.8.3, The GAP Team, 2022 (Refereed GAP package)
[13] W. A. de Graaf, È. B. Vinberg, O. S. Yakimova, “An effective method to compute closure ordering for nilpotent orbits of $\theta$-representations”, J. Algebra, 371 (2012), 38–62 | DOI | MR | Zbl
[14] H. Derksen, G. Kemper, “Computational invariant theory”, Invariant Theory and Algebraic Transformation Groups, v. I, Encyclopaedia of Mathematical Sciences, 130, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[15] H. Dietrich, P. Faccin, W. de Graaf, CoReLG, computing with real Lie algebras. Version 1.56, 2022 (Refereed GAP package) | MR
[16] GAP. GAP — Groups, Algorithms, and Programming. Version 4.11.1, The GAP Group, 2021
[17] V. Gatti, E. Viniberghi, “Spinors of 13-dimensional space”, Adv. in Math., 30:2 (1978), 137–155 | DOI | MR | Zbl
[18] D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, 2016 | Zbl
[19] G. C. Shephard, J. A. Todd, “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl
[20] R. Stekolshchik, Root systems and diagram calculus. I. Regular extensions of Carter diagrams and the uniqueness of conjugacy classes, 2010, arXiv: 1005.2768v6 [math.RT] | Zbl