A translation of “Classification of four-vectors of an 8-dimensional space,” by Antonyan, L. V., with an appendix by the translator
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 269-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a translation of the entitled paper [1]. We include an appendix that shows how to produce normal forms for each nilpotent orbit.
@article{MMO_2022_83_2_a3,
     author = {L. Oeding},
     title = {A translation of {{\textquotedblleft}Classification} of four-vectors of an 8-dimensional space,{\textquotedblright} by {Antonyan,} {L.} {V.,} with an appendix by the translator},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {269--296},
     year = {2022},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a3/}
}
TY  - JOUR
AU  - L. Oeding
TI  - A translation of “Classification of four-vectors of an 8-dimensional space,” by Antonyan, L. V., with an appendix by the translator
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 269
EP  - 296
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a3/
LA  - en
ID  - MMO_2022_83_2_a3
ER  - 
%0 Journal Article
%A L. Oeding
%T A translation of “Classification of four-vectors of an 8-dimensional space,” by Antonyan, L. V., with an appendix by the translator
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 269-296
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a3/
%G en
%F MMO_2022_83_2_a3
L. Oeding. A translation of “Classification of four-vectors of an 8-dimensional space,” by Antonyan, L. V., with an appendix by the translator. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 269-296. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a3/

[1] L. V. Antonyan, “Klassifikatsiya chetyrevektorov vosmimernogo prostranstva”, Tr. sem. po vekt. i tenz. analizu, XX, MGU, M., 1981, 144–161

[2] L. V. Antonyan, A. G. Elashvili, “Klassifikatsiya spinorov razmernosti shestnadtsat”, Tr. Tbil. matem. in-ta, 70 (1982), 5–23 | Zbl

[3] E. B. Vinberg, “O klassifikatsii nilpotentnykh elementov graduirovannykh algebr Li”, DAN SSSR, 225:4 (1975), 745–748 | MR | Zbl

[4] E. B. Vinberg, “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl

[5] E. B. Vinberg, A. G. Elashvili, “Klassifikatsiya tpivektopov 9-mepnogo ppostpanstva”, Tp. sem. po vekt. i tenz. analizu, XVIII, MGU, M., 1978, 197–233

[6] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30(72):2 (1952), 349–462 | Zbl

[7] V. L. Popov, “Konus nul-form Gilberta”, Teoriya chisel, algebra i algebraicheskaya geometriya, Sb. statei, Trudy MIAN, 241, Nauka, M., 2003, 192–209

[8] C. Chevalley, “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl

[9] W. A. de Graaf, “Computing representatives of nilpotent orbits of $\theta$-groups”, J. Symbolic Comput., 46:4 (2011), 438–458 | DOI | MR | Zbl

[10] W. A. de Graaf, Computation with linear algebraic groups, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017 | MR

[11] W. A. de Graaf, SLA. Computing with simple Lie algebras. Version 1.5.3, The GAP Team, 2019 (Refereed GAP package)

[12] W. A. de Graaf, QuaGroup, Computations with quantum groups. Version 1.8.3, The GAP Team, 2022 (Refereed GAP package)

[13] W. A. de Graaf, È. B. Vinberg, O. S. Yakimova, “An effective method to compute closure ordering for nilpotent orbits of $\theta$-representations”, J. Algebra, 371 (2012), 38–62 | DOI | MR | Zbl

[14] H. Derksen, G. Kemper, “Computational invariant theory”, Invariant Theory and Algebraic Transformation Groups, v. I, Encyclopaedia of Mathematical Sciences, 130, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[15] H. Dietrich, P. Faccin, W. de Graaf, CoReLG, computing with real Lie algebras. Version 1.56, 2022 (Refereed GAP package) | MR

[16] GAP. GAP — Groups, Algorithms, and Programming. Version 4.11.1, The GAP Group, 2021

[17] V. Gatti, E. Viniberghi, “Spinors of 13-dimensional space”, Adv. in Math., 30:2 (1978), 137–155 | DOI | MR | Zbl

[18] D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, 2016 | Zbl

[19] G. C. Shephard, J. A. Todd, “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl

[20] R. Stekolshchik, Root systems and diagram calculus. I. Regular extensions of Carter diagrams and the uniqueness of conjugacy classes, 2010, arXiv: 1005.2768v6 [math.RT] | Zbl