Best multiband filter problem
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 257-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

This mini-review examines the problems of geometric function theory that arise in the synthesis of electric filters, and in particular the work of A. A. Gonchar on the generalisation of Zolotarev’s third problem. The modern development of this topic is described, in particular the method of algebro-geometric Ansatz.
@article{MMO_2022_83_2_a2,
     author = {A. B. Bogatyrev},
     title = {Best multiband filter problem},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {257--267},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a2/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Best multiband filter problem
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 257
EP  - 267
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a2/
LA  - ru
ID  - MMO_2022_83_2_a2
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Best multiband filter problem
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 257-267
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a2/
%G ru
%F MMO_2022_83_2_a2
A. B. Bogatyrev. Best multiband filter problem. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 257-267. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a2/

[1] Akhiezer N. I., “Ob odnoi zadache E. I. Zolotareva”, Izv. AN SSSR. VII seriya. Otdelenie fiziko-matematicheskikh nauk, 1929, no. 10, 919–931

[2] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, OGIZ, GITTL, L., 1948 | MR

[3] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[4] A. B. Bogatyrev, Ekstremalnye mnogochleny i rimanovy poverkhnosti, MTsNMO, M., 2005 | MR

[5] A. B. Bogatyrev, “Chebyshevskoe predstavlenie ratsionalnykh funktsii”, Matem. sb., 201:11 (2010), 19–40 | DOI | MR

[6] A. B. Bogatyrev, “Ratsionalnye funktsii, dopuskayuschie dvoinye razlozheniya”, Tr. MMO, 73, no. 2, 2012, 201–206 | Zbl

[7] A. B. Bogatyrev, S. A. Goreinov, S. Yu. Lyamaev, “Analiticheskii podkhod k sintezu mnogopolosnykh filtrov i ego sravnenie s drugimi podkhodami”, Probl. peredachi inform., 53:3 (2017), 64–77 | MR | Zbl

[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[9] A. A. Gonchar, “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sb., 78(120):4 (1969), 640–654 | Zbl

[10] V. N. Dubinin, “Ekstremalnaya zadacha dlya proizvodnoi ratsionalnoi funktsii”, Matem. zametki, 100:5(2016), 732–738 | DOI | MR | Zbl

[11] V. N. Dubinin, “O logarifmicheskoi energii nulei i polyusov ratsionalnoi funktsii”, Sib. matem. zhurn., 57:6 (2016), 1255–1261 | MR | Zbl

[12] E. I. Zolotarev, “Prilozhenie ellipticheskikh funktsii k voprosam o funktsiyakh, naimenee i naibolee otklonyayuschikhsya ot nulya”, Zapiski Imperatorskoi Akademii Nauk, XXX, no. 5, Imperatorskaya Akademiya Nauk, SPb., 1877, 1–71

[13] V. I. Lebedev, “O nakhozhdenii mnogochlenov nailuchshego s vesom priblizheniya”, Matem. sb., 199:2 (2008), 49–70 | DOI | Zbl

[14] V. N. Malozemov, “Zadacha sinteza mnogopolosnogo elektricheskogo filtra”, Zh. vychisl. matem. i matem. fiz., 19:3 (1979), 601–609 | MR

[15] Remez E. Ya., Osnovy chislennykh metodov chebyshevskogo priblizheniya, Naukova Dumka, Kiev, 1969 | MR

[16] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR

[17] R. A.-R. Amer, H. R. Schwarz, Contributions to the approximation problem of electrical filters, Mitt. Inst. Angew. Math., 9, Birkhäuser, Basel, 1964 | MR

[18] A. B. Bogatyrëv, “Computations in moduli spaces”, Comp. Methods Funct. Theory, 7:2 (2007), 309–324 | DOI | MR | Zbl

[19] A. B. Bogatyrëv, “Projective view at optimization problem for multiband filter”, Proc. Amer. Math. Soc., 149:7 (2021), 3021–3035 | DOI | MR | Zbl

[20] Cauer W., Theorie der linearen Wechselstromschaltungen, v. 1, Leipzig: Becker Erler, 1941 ; v. 2, Akademie, Berlin, 1960 | MR | Zbl | Zbl

[21] A. Bobenko and C. Klein (eds.), Computational approach to Riemann surfaces, Lecture Notes in Math., 2013, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[22] Fuchs W. H. J. (Univ. Durham, Durham, 1979), Proc. NATO Adv. Study Inst., 1980, On Chebyshev approximation on sets with several components. Aspects of contemporary complex analysis, Academic Press, London–New York | MR

[23] Lunot V., Bila S., Seyfert F., “Optimal synthesis for multi-band microwave filters”, 2007 IEEE/MTT-S International Microwave Symposium, 2007, 115–118

[24] E. Stiefel, “Le problème d'approximation dans la théorie des filtres électriques”, Colloque sur l'analyse numérique à Mons, 1961, 81–87 | MR | Zbl

[25] E. Stiefel, “Methods — old and new — for solving the Tchebycheff approximation problem”, J. Soc. Indust. Appl. Math. Ser. B. Numer. Anal., 1 (1964), 164–176 | DOI | MR | Zbl

[26] Veidinger L., “On the numerical determination of the best approximations in the Chebyshev sense”, Numer. Math., 2 (1960), 99–105 | DOI | MR | Zbl