Best multiband filter problem
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 257-267

Voir la notice de l'article provenant de la source Math-Net.Ru

This mini-review examines the problems of geometric function theory that arise in the synthesis of electric filters, and in particular the work of A. A. Gonchar on the generalisation of Zolotarev’s third problem. The modern development of this topic is described, in particular the method of algebro-geometric Ansatz.
@article{MMO_2022_83_2_a2,
     author = {A. B. Bogatyrev},
     title = {Best multiband filter problem},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {257--267},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a2/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Best multiband filter problem
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 257
EP  - 267
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a2/
LA  - ru
ID  - MMO_2022_83_2_a2
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Best multiband filter problem
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 257-267
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a2/
%G ru
%F MMO_2022_83_2_a2
A. B. Bogatyrev. Best multiband filter problem. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 257-267. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a2/