On properties of limits of solutions in the noncommutative sigma model
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 241-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, sufficient conditions are obtained for the limit of a sequence of solutions converging in the operator norm also to be a solution. It is shown that the extended solutions of such a sequence of solutions converge to an extended solution of the limit. It is also shown that the limit of a sequence of solutions with uniton number 3 can only have uniton number 2 or 3.
@article{MMO_2022_83_2_a1,
     author = {A. V. Domrina},
     title = {On properties of limits of solutions in the noncommutative sigma model},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {241--256},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a1/}
}
TY  - JOUR
AU  - A. V. Domrina
TI  - On properties of limits of solutions in the noncommutative sigma model
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 241
EP  - 256
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a1/
LA  - ru
ID  - MMO_2022_83_2_a1
ER  - 
%0 Journal Article
%A A. V. Domrina
%T On properties of limits of solutions in the noncommutative sigma model
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 241-256
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a1/
%G ru
%F MMO_2022_83_2_a1
A. V. Domrina. On properties of limits of solutions in the noncommutative sigma model. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 241-256. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a1/

[1] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1989

[2] A. V. Domrina, “Petlevye podnyatiya v nekommutativnoi sigma-modeli ”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Tr. MIAN, 279, 2012, 72–80 | MR | Zbl

[3] A. V. Domrina, “Tselochislennye kharakteristiki reshenii nekommutativnoi sigma-modeli”, TMF, 178:3 (2014), 307–321 | DOI | MR | Zbl

[4] A. V. Domrina, “Opisanie reshenii s unitonnym chislom 3 v sluchae odnogo sobstvennogo znacheniya. Kontrprimer k gipoteze o razmernosti”, TMF, 201:1 (2019), 3–16 | DOI | MR | Zbl

[5] A. V. Domrina, A. V. Domrin, “O razmernosti prostranstv reshenii nekommutativnoi sigma-modeli v sluchae unitonnogo chisla 2”, Kompleksnyi analiz i ego prilozheniya, Tr. MIAN, 298, 2017, 112–126 | MR

[6] A. V. Domrin, “Nekommutativnye unitony”, TMF, 154:2 (2008), 220–239 | DOI | MR | Zbl

[7] A. V. Domrin, “Prostranstva modulei reshenii nekommutativnoi sigma-modeli”, TMF, 156:3 (2008), 307–327 | DOI | MR | Zbl