@article{MMO_2022_83_2_a0,
author = {A. Kh. Khachatryan and Kh. A. Khachatryan and A. Zh. Narimanyan},
title = {Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {219--239},
year = {2022},
volume = {83},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a0/}
}
TY - JOUR AU - A. Kh. Khachatryan AU - Kh. A. Khachatryan AU - A. Zh. Narimanyan TI - Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 219 EP - 239 VL - 83 IS - 2 UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a0/ LA - en ID - MMO_2022_83_2_a0 ER -
%0 Journal Article %A A. Kh. Khachatryan %A Kh. A. Khachatryan %A A. Zh. Narimanyan %T Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics %J Trudy Moskovskogo matematičeskogo obŝestva %D 2022 %P 219-239 %V 83 %N 2 %U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a0/ %G en %F MMO_2022_83_2_a0
A. Kh. Khachatryan; Kh. A. Khachatryan; A. Zh. Narimanyan. Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 219-239. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a0/
[1] V. Capasso, “Global solution for a diffusive nonlinear deterministic epidemic model”, SIAM J. Appl. Math., 35:2 (1978), 274–284 | DOI | MR | Zbl
[2] S. Cauchemez, P. Horby, A. Fox et al., PLOS Pathogens., 8:12 (2012), e1003061, Influenza infection rates, measurement errors and the interpretation of paired serology | DOI
[3] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl
[4] A. S. Evans (ed.), Viral infections of Humans, Springer, Plenum Medical Book Company, New York, 1982
[5] C. Gomez, H. Prado, S. Trofimchuk, “Separation dichotomy and wavefronts for a nonlinear convolution equation”, J. Math. Anal. Appl., 420:1 (2014), 1–19 | DOI | MR | Zbl
[6] S. A. Gurli, Dzh. V.-Kh. Sou, Dzh. Kh. Vu, “Nelokalnye uravneniya reaktsii-diffuzii s zapazdyvaniem: biologicheskie modeli i nelineinaya dinamika”, SMFN, 1, 2003, 84–120
[7] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR
[8] D. Liang, J. Wu, “Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects”, J. Nonlinear Sci., 13:3 (2003), 289–310 | DOI | MR | Zbl
[9] S. Ma, “Traveling waves for non-local delayed diffusion equations via auxiliary equations”, J. Diff. Equations, 237 (2004), 259–277 | MR
[10] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc, New York, 1991 | MR | Zbl
[11] K. Schumacher, “Travelling-front solutions for integro-differential equations. I”, J. Reine Angew. Math., 316 (1980), 54–70 | MR | Zbl
[12] “J. W.-H. So, J. Wu, X. Zou”, R. Soc. Lond. Proc. Ser. A. Math. Phys. Eng. Sci., 457:2012 (2001), A reaction" diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains | MR
[13] E. Trofimchuk, P. Alvarado, S. Trofimchuk, “On the geometry of wave solutions of a delayed reaction-diffusion equation”, J. Diff. Equations, 246:4 (2009), 1422–1444 | DOI | MR | Zbl
[14] D. Volkov, R. Lui, “Spreading speed and traveling wave solutons of a partially sedentary population”, IMA J. Appl. Math., 72:6 (2007), 801–816 | DOI | MR | Zbl
[15] G. F. Webb, “A reaction-diffusion model for a deterministic diffusive epidemic”, J. Math. Anal. Appl., 84:1 (1981), 150–161 | DOI | MR | Zbl
[16] S. A. Williams, P. L. Chow, “Nonlinear reaction-diffusion models for interacting populations”, J. Math. Anal. Appl., 62:1 (1978), 157–169 | DOI | MR | Zbl