Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 219-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present work investigates a convolution type nonlinear integro-differential equation with diffusion. This type of equations represent not only pure mathematical interest, but also are widely used in various applications, especially in wide range of problems on population dynamics arising in biology. The existence of a parametric family of travelling wave solutions as well as the uniqueness of the solution in certain class of bounded continuous functions on $\mathbb{R}$ is proved. The study investigates also some important properties as well as asymptotic behaviour of constructed solutions. This results are then used to derive a new uniform estimate for the deviation between successive iterations, which provides us with a strong tool to control the number of iterations on our way of computing the desired numerical approximation of the exact solution. Finally, we apply our theoretical results to two well-known population problems modelled by delayed reaction-diffusion equation: Diffusion model for spatial-temporal spread of epidemics and stage structured population model. References: 16 entries.
@article{MMO_2022_83_2_a0,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan and A. Zh. Narimanyan},
     title = {Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {219--239},
     year = {2022},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a0/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
AU  - A. Zh. Narimanyan
TI  - Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 219
EP  - 239
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a0/
LA  - en
ID  - MMO_2022_83_2_a0
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%A A. Zh. Narimanyan
%T Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 219-239
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a0/
%G en
%F MMO_2022_83_2_a0
A. Kh. Khachatryan; Kh. A. Khachatryan; A. Zh. Narimanyan. Existence and uniqueness result for reaction-diffusion model of diffusive population dynamics. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 219-239. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a0/

[1] V. Capasso, “Global solution for a diffusive nonlinear deterministic epidemic model”, SIAM J. Appl. Math., 35:2 (1978), 274–284 | DOI | MR | Zbl

[2] S. Cauchemez, P. Horby, A. Fox et al., PLOS Pathogens., 8:12 (2012), e1003061, Influenza infection rates, measurement errors and the interpretation of paired serology | DOI

[3] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[4] A. S. Evans (ed.), Viral infections of Humans, Springer, Plenum Medical Book Company, New York, 1982

[5] C. Gomez, H. Prado, S. Trofimchuk, “Separation dichotomy and wavefronts for a nonlinear convolution equation”, J. Math. Anal. Appl., 420:1 (2014), 1–19 | DOI | MR | Zbl

[6] S. A. Gurli, Dzh. V.-Kh. Sou, Dzh. Kh. Vu, “Nelokalnye uravneniya reaktsii-diffuzii s zapazdyvaniem: biologicheskie modeli i nelineinaya dinamika”, SMFN, 1, 2003, 84–120

[7] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[8] D. Liang, J. Wu, “Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects”, J. Nonlinear Sci., 13:3 (2003), 289–310 | DOI | MR | Zbl

[9] S. Ma, “Traveling waves for non-local delayed diffusion equations via auxiliary equations”, J. Diff. Equations, 237 (2004), 259–277 | MR

[10] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc, New York, 1991 | MR | Zbl

[11] K. Schumacher, “Travelling-front solutions for integro-differential equations. I”, J. Reine Angew. Math., 316 (1980), 54–70 | MR | Zbl

[12] “J. W.-H. So, J. Wu, X. Zou”, R. Soc. Lond. Proc. Ser. A. Math. Phys. Eng. Sci., 457:2012 (2001), A reaction" diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains | MR

[13] E. Trofimchuk, P. Alvarado, S. Trofimchuk, “On the geometry of wave solutions of a delayed reaction-diffusion equation”, J. Diff. Equations, 246:4 (2009), 1422–1444 | DOI | MR | Zbl

[14] D. Volkov, R. Lui, “Spreading speed and traveling wave solutons of a partially sedentary population”, IMA J. Appl. Math., 72:6 (2007), 801–816 | DOI | MR | Zbl

[15] G. F. Webb, “A reaction-diffusion model for a deterministic diffusive epidemic”, J. Math. Anal. Appl., 84:1 (1981), 150–161 | DOI | MR | Zbl

[16] S. A. Williams, P. L. Chow, “Nonlinear reaction-diffusion models for interacting populations”, J. Math. Anal. Appl., 62:1 (1978), 157–169 | DOI | MR | Zbl