On a class of degenerate hypoelliptic polynomials
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 181-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to finding conditions on “lower-order terms”, the addition of which does not violate the hypoellipticity of a given operator (of the characteristic polynomial of this operator). Necessary and sufficient conditions for the hypoellipticity of “two-layered polynomials” are obtained. In terms of comparing strength, power, and the upper bound of the ratio of comparable polynomials, conditions are obtained under which the added polynomials preserve the hypoellipticity of the original polynomial. Examples are given that illustrate the obtained results.
@article{MMO_2022_83_1_a6,
     author = {H. G. Kazaryan and V. N. Margaryan},
     title = {On a class of degenerate hypoelliptic polynomials},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {181--217},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a6/}
}
TY  - JOUR
AU  - H. G. Kazaryan
AU  - V. N. Margaryan
TI  - On a class of degenerate hypoelliptic polynomials
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 181
EP  - 217
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a6/
LA  - ru
ID  - MMO_2022_83_1_a6
ER  - 
%0 Journal Article
%A H. G. Kazaryan
%A V. N. Margaryan
%T On a class of degenerate hypoelliptic polynomials
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 181-217
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a6/
%G ru
%F MMO_2022_83_1_a6
H. G. Kazaryan; V. N. Margaryan. On a class of degenerate hypoelliptic polynomials. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 181-217. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a6/

[1] V. I. Burenkov, “Analog teoremy Khermandera o gipoelliptichnosti dlya funktsii, stremyaschikhsya k nulyu na beskonechnosti”, Sb. dokladov VII sovetsko-chekhoslovatskogo seminara, Izd-vo Erevan. un-ta, Erevan, 1982, 63–67

[2] L. R. Volevich, S. G. Gindikin, “Ob odnom klasse gipoellipticheskikh polinomov”, Matem. sb., 75(117):3 (1968), 400–416 | Zbl

[3] O. R. Gabrielyan, “O stepeni prevalirovaniya vypozhdayuschikhsya mnogochlenov i ob ikh gipoelliptichnosti”, Izv. NAN Armenii. Matematika, XXXVIII:6 (2003), 63–82 | Zbl

[4] E. A. Gorin, “Ob asimptoticheskikh svoistvakh mnogochlenov i algebraicheskikh funktsii ot neskolkikh peremennykh”, UMN, 16:1 (1961), 91–118 | MR | Zbl

[5] S. G. Gindikin, “Energeticheskie otsenki, svyazannye s mnogogrannikom Nyutona”, Tr. MMO, 31, 1974, 189–236 | Zbl

[6] V. V. Grushin, “Ob odnom klasse gipoellipticheskikh operatorov”, Matem. sb., 83:3 (1970), 456–473 | MR | Zbl

[7] G. G. Kazaryan, “Otsenki $L_{p}$" norm proizvodnykh funktsii cherez nabora neregulyarnykh differentsialnykh operatorov”, Diff. uravneniya, 5:5 (1969), 911–921 | Zbl

[8] G. G. Kazaryan, “Ob odnom semeistve gipoellipticheskikh polinomov”, Izv. AN Arm. SSR. Matematika, IX:3 (1974), 189–211 | Zbl

[9] G. G. Kazaryan, “O dobavlenii mladshikh chlenov k differentsialnym polinomam”, Izv. AN Arm. SSR. Matematika, IX:6 (1974), 473–485

[10] G. G. Kazaryan, “O sravnenii differentsialnykh operatorov i differentsialnykh operatorakh postoyannoi sily”, Tr. MIAN, 131, 1974, 94–118 | Zbl

[11] G. G. Kazaryan, “Otsenki differentsialnykh operatorov i gipoellipticheskie operatory”, Tr. MIAN, 140, 1976, 130–161 | Zbl

[12] G. G. Kazaryan, “Operatory postoyannoi sily s otsenkoi snizu cherez proizvodnye i formalno gipoellipticheskie operatory”, Anal. Math., 3:4 (1977), 263–289 | DOI | MR | Zbl

[13] G. G. Kazaryan, “Sravnenie moschnosti mnogochlenov i ikh gipoelliptichnost”, Tr. MIAN, 150, 1979, 143–159 | Zbl

[14] G. G. Kazaryan, “O pochti gipoellipticheskikh mnogochlenakh, vozrastayuschikh na beskonechnosti”, Izv. NAN Armenii. Matematika, 46:6 (2011), 11–30 | MR | Zbl

[15] G. G. Kazaryan, V. N. Markaryan, “Kriterii gipoelliptichnosti v terminakh moschnosti i sily operatorov”, Tr. MIAN, 150, 1979, 128–142 | Zbl

[16] G. G. Kazaryan, V. N. Margaryan, “Nositel gipoelliptichnosti lineinykh differentsialnykh operatorov”, Izv. NAN Armenii. Matematika, XXI:5 (1986), 453–470 | MR

[17] G. G. Kazaryan, V. N. Margaryan, “Kriterii gipoelliptichnosti mnogochlenov v terminakh Zaidenberga"– Tarskogo”, Izv. NAN Armenii. Matematika, XLI:3 (2006), 38–55

[18] V. N. Markaryan, “Dobavlenie mladshikh chlenov, sokhranyayuschikh gipoelliptichnost operatora”, Izv. NAN Armenii. Matematika, XV:6 (1980), 443–460 | Zbl

[19] V. P. Mikhailov, “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Tr. MIAN, 19, 1967, 59–80

[20] S. M. Nikolskii, “Pervaya kraevaya zadacha dlya odnogo obschego lineinogo uravneniya”, DAN SSSR, 146:4 (1962), 767–769 | Zbl

[21] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, V 4-kh t., v. 2, Mir, M., 1986

[22] F. Bouchut, “Hypoelliptic regularity in kinetic equations”, J. Math. Pures Appl., 81:11 (2002), 1135–1159 | DOI | MR | Zbl

[23] L. Cattabriga, “Su una classe di polinomi ipoellittici”, Rend. Sem. Mat. Univ. Padova, 36 (1966), 285–309 | MR | Zbl

[24] L. Cattabriga, “Uno spazio funzionale connesso ad una classe di operatori ipoellittici”, Symposia Mathematica, VII, Acad. Press, London, 1971, 547–558 | MR

[25] M. Chaleyat-Maurel, “La condition d'hypoellipti{c}ité d'Hörmander”, Astérisque, 84–85 (1981), 189–202 | Zbl

[26] J. Friberg, “Multi-quasielliptic polynomials”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 21 (1967), 239–260 | MR | Zbl

[27] “L. Gårding, B. Malgrange”, Math. Scand., 9 (1961), 5–21 | DOI | MR | Zbl

[28] H. G. Ghazaryan, V. N. Margaryan, “On increase at infinity of almost hypoelliptic polynomials”, Eurasian Math. J., 4:4 (2013), 30–42 | MR | Zbl

[29] S. G. Gindikin, L. R. Volevich, The method of Newton's polyhedron in the theory of partial differential equations, MASS, 86, Kluwer Academic Publishers Group, Dordrecht, 1992 | MR

[30] L. Hörmander, The analysis of linear partial differential operators, v. I, Springer-Verlag, Berlin, 1983 | MR

[31] A. G. Khovanskii, “Newton Polyhedra (algebra and geometry)”, AMS Transl. (2), 153 (1992), 1–15

[32] P. K. Kythe, Fundamental solutions for differential operators and applications, Birkhäuser Boston, Boston, MA, 1996 | MR | Zbl

[33] B. Malgrange, “Sur une classe d'opérateurs différentiels hypoelliptiques”, Bull. Math. France., 85:3 (1957), 283–306 | DOI | MR | Zbl

[34] E. Pehkonen, Regularität der schwachen Lösungen linearer quasielliptischer Dirichletprobleme, PhD Thesis, Matematiikan Laitos Berichte, 16, Univ. Jyväskylä, 1976 | MR

[35] E. Pehkonen, “Ein hypoelliptisches Dirichletproblem”, Soc. Sci. Fenn. Comment. Phys.-Math., 48:3 (1978), 131–143 | MR | Zbl

[36] B. Pini, “Osservazioni sulla ipoellittisità”, Boll. Un. Mat. Ital. (3), 18:4 (1963), 420–432 | MR | Zbl

[37] B. Pini, “Sulla classe di Gevrey delle soluzioni di certe equazioni ipoellittiche”, Boll. Un. Mat. Ital. (3), 18:3 (1963), 260–269 | MR | Zbl

[38] F. Trèves, “Opérateurs différentiels hypoelliptiques”, Ann. Inst. Fourier (Grenoble), 9 (1959), 1–73 | DOI | MR | Zbl

[39] C. Zuily, “Sur l'hypoellipticité des opérateurs différentiels du second ordre à coefficients réels”, J. Math. Pures Appl., 55:1 (1976), 99–129 | MR | Zbl